Metamath Proof Explorer


Theorem prdsvallem

Description: Lemma for prdsval . (Contributed by Stefan O'Rear, 3-Jan-2015) Extracted from the former proof of prdsval , dependency on df-hom removed. (Revised by AV, 13-Oct-2024)

Ref Expression
Assertion prdsvallem fv,gvxdomrfxHomrxgxV

Proof

Step Hyp Ref Expression
1 vex vV
2 ovex ranranranrdomrV
3 2 pwex 𝒫ranranranrdomrV
4 ovssunirn fxHomrxgxranHomrx
5 homid Hom=SlotHomndx
6 5 strfvss Homrxranrx
7 fvssunirn rxranr
8 rnss rxranrranrxranranr
9 uniss ranrxranranrranrxranranr
10 7 8 9 mp2b ranrxranranr
11 6 10 sstri Homrxranranr
12 rnss HomrxranranrranHomrxranranranr
13 uniss ranHomrxranranranrranHomrxranranranr
14 11 12 13 mp2b ranHomrxranranranr
15 4 14 sstri fxHomrxgxranranranr
16 15 rgenw xdomrfxHomrxgxranranranr
17 ss2ixp xdomrfxHomrxgxranranranrxdomrfxHomrxgxxdomrranranranr
18 16 17 ax-mp xdomrfxHomrxgxxdomrranranranr
19 vex rV
20 19 dmex domrV
21 19 rnex ranrV
22 21 uniex ranrV
23 22 rnex ranranrV
24 23 uniex ranranrV
25 24 rnex ranranranrV
26 25 uniex ranranranrV
27 20 26 ixpconst xdomrranranranr=ranranranrdomr
28 18 27 sseqtri xdomrfxHomrxgxranranranrdomr
29 2 28 elpwi2 xdomrfxHomrxgx𝒫ranranranrdomr
30 29 rgen2w fvgvxdomrfxHomrxgx𝒫ranranranrdomr
31 1 1 3 30 mpoexw fv,gvxdomrfxHomrxgxV