Metamath Proof Explorer


Theorem prdsvalstr

Description: Structure product value is a structure. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Mario Carneiro, 30-Apr-2015) (Revised by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Assertion prdsvalstr BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙𝑖ndx,˙TopSetndxOndxLdistndxDHomndxHcompndx˙Struct115

Proof

Step Hyp Ref Expression
1 unass BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙𝑖ndx,˙TopSetndxOndxLdistndxDHomndxHcompndx˙=BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙𝑖ndx,˙TopSetndxOndxLdistndxDHomndxHcompndx˙
2 eqid BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙𝑖ndx,˙TopSetndxOndxLdistndxD=BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙𝑖ndx,˙TopSetndxOndxLdistndxD
3 2 imasvalstr BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙𝑖ndx,˙TopSetndxOndxLdistndxDStruct112
4 1nn0 10
5 4nn 4
6 4 5 decnncl 14
7 homndx Homndx=14
8 4nn0 40
9 5nn 5
10 4lt5 4<5
11 4 8 9 10 declt 14<15
12 4 9 decnncl 15
13 ccondx compndx=15
14 6 7 11 12 13 strle2 HomndxHcompndx˙Struct1415
15 2nn0 20
16 2lt4 2<4
17 4 15 5 16 declt 12<14
18 3 14 17 strleun BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙𝑖ndx,˙TopSetndxOndxLdistndxDHomndxHcompndx˙Struct115
19 1 18 eqbrtrri BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙𝑖ndx,˙TopSetndxOndxLdistndxDHomndxHcompndx˙Struct115