Metamath Proof Explorer


Theorem predprc

Description: The predecessor of a proper class is empty. (Contributed by Scott Fenton, 25-Nov-2024)

Ref Expression
Assertion predprc ¬ X V Pred R A X =

Proof

Step Hyp Ref Expression
1 df-pred Pred R A X = A R -1 X
2 snprc ¬ X V X =
3 2 biimpi ¬ X V X =
4 3 imaeq2d ¬ X V R -1 X = R -1
5 ima0 R -1 =
6 4 5 eqtrdi ¬ X V R -1 X =
7 6 ineq2d ¬ X V A R -1 X = A
8 in0 A =
9 7 8 eqtrdi ¬ X V A R -1 X =
10 1 9 eqtrid ¬ X V Pred R A X =