Metamath Proof Explorer


Theorem preleqALT

Description: Alternate proof of preleq , not based on preleqg : Equality of two unordered pairs when one member of each pair contains the other member. (Contributed by NM, 16-Oct-1996) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses preleq.b BV
preleqALT.d DV
Assertion preleqALT ABCDAB=CDA=CB=D

Proof

Step Hyp Ref Expression
1 preleq.b BV
2 preleqALT.d DV
3 1 jctr ABABBV
4 2 jctr CDCDDV
5 preq12bg ABBVCDDVAB=CDA=CB=DA=DB=C
6 3 4 5 syl2an ABCDAB=CDA=CB=DA=DB=C
7 6 biimpa ABCDAB=CDA=CB=DA=DB=C
8 7 ord ABCDAB=CD¬A=CB=DA=DB=C
9 en2lp ¬DCCD
10 eleq12 A=DB=CABDC
11 10 anbi1d A=DB=CABCDDCCD
12 9 11 mtbiri A=DB=C¬ABCD
13 8 12 syl6 ABCDAB=CD¬A=CB=D¬ABCD
14 13 con4d ABCDAB=CDABCDA=CB=D
15 14 ex ABCDAB=CDABCDA=CB=D
16 15 pm2.43a ABCDAB=CDA=CB=D
17 16 imp ABCDAB=CDA=CB=D