Metamath Proof Explorer


Theorem prf1

Description: Value of the pairing functor on objects. (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypotheses prfval.k P = F ⟨,⟩ F G
prfval.b B = Base C
prfval.h H = Hom C
prfval.c φ F C Func D
prfval.d φ G C Func E
prf1.x φ X B
Assertion prf1 φ 1 st P X = 1 st F X 1 st G X

Proof

Step Hyp Ref Expression
1 prfval.k P = F ⟨,⟩ F G
2 prfval.b B = Base C
3 prfval.h H = Hom C
4 prfval.c φ F C Func D
5 prfval.d φ G C Func E
6 prf1.x φ X B
7 1 2 3 4 5 prfval φ P = x B 1 st F x 1 st G x x B , y B h x H y x 2 nd F y h x 2 nd G y h
8 2 fvexi B V
9 8 mptex x B 1 st F x 1 st G x V
10 8 8 mpoex x B , y B h x H y x 2 nd F y h x 2 nd G y h V
11 9 10 op1std P = x B 1 st F x 1 st G x x B , y B h x H y x 2 nd F y h x 2 nd G y h 1 st P = x B 1 st F x 1 st G x
12 7 11 syl φ 1 st P = x B 1 st F x 1 st G x
13 simpr φ x = X x = X
14 13 fveq2d φ x = X 1 st F x = 1 st F X
15 13 fveq2d φ x = X 1 st G x = 1 st G X
16 14 15 opeq12d φ x = X 1 st F x 1 st G x = 1 st F X 1 st G X
17 opex 1 st F X 1 st G X V
18 17 a1i φ 1 st F X 1 st G X V
19 12 16 6 18 fvmptd φ 1 st P X = 1 st F X 1 st G X