Metamath Proof Explorer


Theorem prf1

Description: Value of the pairing functor on objects. (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypotheses prfval.k P=F⟨,⟩FG
prfval.b B=BaseC
prfval.h H=HomC
prfval.c φFCFuncD
prfval.d φGCFuncE
prf1.x φXB
Assertion prf1 φ1stPX=1stFX1stGX

Proof

Step Hyp Ref Expression
1 prfval.k P=F⟨,⟩FG
2 prfval.b B=BaseC
3 prfval.h H=HomC
4 prfval.c φFCFuncD
5 prfval.d φGCFuncE
6 prf1.x φXB
7 1 2 3 4 5 prfval φP=xB1stFx1stGxxB,yBhxHyx2ndFyhx2ndGyh
8 2 fvexi BV
9 8 mptex xB1stFx1stGxV
10 8 8 mpoex xB,yBhxHyx2ndFyhx2ndGyhV
11 9 10 op1std P=xB1stFx1stGxxB,yBhxHyx2ndFyhx2ndGyh1stP=xB1stFx1stGx
12 7 11 syl φ1stP=xB1stFx1stGx
13 simpr φx=Xx=X
14 13 fveq2d φx=X1stFx=1stFX
15 13 fveq2d φx=X1stGx=1stGX
16 14 15 opeq12d φx=X1stFx1stGx=1stFX1stGX
17 opex 1stFX1stGXV
18 17 a1i φ1stFX1stGXV
19 12 16 6 18 fvmptd φ1stPX=1stFX1stGX