Metamath Proof Explorer


Theorem prfi

Description: An unordered pair is finite. (Contributed by NM, 22-Aug-2008)

Ref Expression
Assertion prfi ABFin

Proof

Step Hyp Ref Expression
1 df-pr AB=AB
2 snfi AFin
3 snfi BFin
4 unfi AFinBFinABFin
5 2 3 4 mp2an ABFin
6 1 5 eqeltri ABFin