Metamath Proof Explorer


Theorem prjsprel

Description: Utility theorem regarding the relation used in PrjSp . (Contributed by Steven Nguyen, 29-Apr-2023)

Ref Expression
Hypothesis prjsprel.1 ˙ = x y | x B y B l K x = l · ˙ y
Assertion prjsprel X ˙ Y X B Y B m K X = m · ˙ Y

Proof

Step Hyp Ref Expression
1 prjsprel.1 ˙ = x y | x B y B l K x = l · ˙ y
2 simpll x = X y = Y l = m x = X
3 simpr x = X y = Y l = m l = m
4 simplr x = X y = Y l = m y = Y
5 3 4 oveq12d x = X y = Y l = m l · ˙ y = m · ˙ Y
6 2 5 eqeq12d x = X y = Y l = m x = l · ˙ y X = m · ˙ Y
7 6 cbvrexdva x = X y = Y l K x = l · ˙ y m K X = m · ˙ Y
8 7 1 brab2a X ˙ Y X B Y B m K X = m · ˙ Y