Metamath Proof Explorer


Theorem prjsprel

Description: Utility theorem regarding the relation used in PrjSp . (Contributed by Steven Nguyen, 29-Apr-2023)

Ref Expression
Hypothesis prjsprel.1 ˙=xy|xByBlKx=l·˙y
Assertion prjsprel X˙YXBYBmKX=m·˙Y

Proof

Step Hyp Ref Expression
1 prjsprel.1 ˙=xy|xByBlKx=l·˙y
2 simpll x=Xy=Yl=mx=X
3 simpr x=Xy=Yl=ml=m
4 simplr x=Xy=Yl=my=Y
5 3 4 oveq12d x=Xy=Yl=ml·˙y=m·˙Y
6 2 5 eqeq12d x=Xy=Yl=mx=l·˙yX=m·˙Y
7 6 cbvrexdva x=Xy=YlKx=l·˙ymKX=m·˙Y
8 7 1 brab2a X˙YXBYBmKX=m·˙Y