Metamath Proof Explorer


Theorem prodfclim1

Description: The constant one product converges to one. (Contributed by Scott Fenton, 5-Dec-2017)

Ref Expression
Hypothesis prodf1.1 Z=M
Assertion prodfclim1 MseqM×Z×11

Proof

Step Hyp Ref Expression
1 prodf1.1 Z=M
2 1 prodf1f MseqM×Z×1=Z×1
3 ax-1cn 1
4 1 eqimss2i MZ
5 1 fvexi ZV
6 4 5 climconst2 1MZ×11
7 3 6 mpan MZ×11
8 2 7 eqbrtrd MseqM×Z×11