Metamath Proof Explorer


Theorem prssbd

Description: If a pair is a subset of a class, the second element of the pair is an element of that class. (Contributed by Thierry Arnoux, 2-Nov-2025)

Ref Expression
Hypotheses prssbd.1 φ B V
prssbd.2 φ A B C
Assertion prssbd φ B C

Proof

Step Hyp Ref Expression
1 prssbd.1 φ B V
2 prssbd.2 φ A B C
3 simpr φ A V A V
4 1 adantr φ A V B V
5 2 adantr φ A V A B C
6 prssg A V B V A C B C A B C
7 6 biimpar A V B V A B C A C B C
8 3 4 5 7 syl21anc φ A V A C B C
9 8 simprd φ A V B C
10 prprc1 ¬ A V A B = B
11 10 adantl φ ¬ A V A B = B
12 2 adantr φ ¬ A V A B C
13 11 12 eqsstrrd φ ¬ A V B C
14 snssg B V B C B C
15 14 biimpar B V B C B C
16 1 13 15 syl2an2r φ ¬ A V B C
17 9 16 pm2.61dan φ B C