Metamath Proof Explorer


Theorem prstcbas

Description: The base set is unchanged. (Contributed by Zhi Wang, 20-Sep-2024)

Ref Expression
Hypotheses prstcnid.c No typesetting found for |- ( ph -> C = ( ProsetToCat ` K ) ) with typecode |-
prstcnid.k φ K Proset
prstcbas.b φ B = Base K
Assertion prstcbas φ B = Base C

Proof

Step Hyp Ref Expression
1 prstcnid.c Could not format ( ph -> C = ( ProsetToCat ` K ) ) : No typesetting found for |- ( ph -> C = ( ProsetToCat ` K ) ) with typecode |-
2 prstcnid.k φ K Proset
3 prstcbas.b φ B = Base K
4 baseid Base = Slot Base ndx
5 slotsbhcdif Base ndx Hom ndx Base ndx comp ndx Hom ndx comp ndx
6 5 simp2i Base ndx comp ndx
7 5 simp1i Base ndx Hom ndx
8 1 2 4 6 7 prstcnid φ Base K = Base C
9 3 8 eqtrd φ B = Base C