Metamath Proof Explorer


Theorem prstr

Description: "Less than or equal to" is transitive in a proset. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Hypotheses isprs.b B=BaseK
isprs.l ˙=K
Assertion prstr KProsetXBYBZBX˙YY˙ZX˙Z

Proof

Step Hyp Ref Expression
1 isprs.b B=BaseK
2 isprs.l ˙=K
3 1 2 prslem KProsetXBYBZBX˙XX˙YY˙ZX˙Z
4 3 simprd KProsetXBYBZBX˙YY˙ZX˙Z
5 4 3impia KProsetXBYBZBX˙YY˙ZX˙Z