Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Rodolfo Medina
Partitions
prtlem12
Next ⟩
prtlem13
Metamath Proof Explorer
Ascii
Unicode
Theorem
prtlem12
Description:
Lemma for
prtex
and
prter3
.
(Contributed by
Rodolfo Medina
, 13-Oct-2010)
Ref
Expression
Assertion
prtlem12
⊢
∼
˙
=
x
y
|
∃
u
∈
A
x
∈
u
∧
y
∈
u
→
Rel
⁡
∼
˙
Proof
Step
Hyp
Ref
Expression
1
relopabv
⊢
Rel
⁡
x
y
|
∃
u
∈
A
x
∈
u
∧
y
∈
u
2
releq
⊢
∼
˙
=
x
y
|
∃
u
∈
A
x
∈
u
∧
y
∈
u
→
Rel
⁡
∼
˙
↔
Rel
⁡
x
y
|
∃
u
∈
A
x
∈
u
∧
y
∈
u
3
1
2
mpbiri
⊢
∼
˙
=
x
y
|
∃
u
∈
A
x
∈
u
∧
y
∈
u
→
Rel
⁡
∼
˙