Metamath Proof Explorer


Theorem prtlem15

Description: Lemma for prter1 and prtex . (Contributed by Rodolfo Medina, 13-Oct-2010)

Ref Expression
Assertion prtlem15 PrtAxAyAuxwxwyvyzAuzvz

Proof

Step Hyp Ref Expression
1 anabs7 wxwyuxvywxwyuxvywxwy
2 an43 uxwxwyvyuxvywxwy
3 2 anbi2i wxwyuxwxwyvywxwyuxvywxwy
4 1 3 2 3bitr4ri uxwxwyvywxwyuxwxwyvy
5 prtlem14 PrtAxAyAwxwyx=y
6 an3 uxwxwyvyuxvy
7 elequ2 x=yvxvy
8 7 anbi2d x=yuxvxuxvy
9 6 8 imbitrrid x=yuxwxwyvyuxvx
10 5 9 syl8 PrtAxAyAwxwyuxwxwyvyuxvx
11 10 imp4a PrtAxAyAwxwyuxwxwyvyuxvx
12 4 11 syl7bi PrtAxAyAuxwxwyvyuxvx
13 12 expdimp PrtAxAyAuxwxwyvyuxvx
14 13 rexlimdv PrtAxAyAuxwxwyvyuxvx
15 14 reximdva PrtAxAyAuxwxwyvyxAuxvx
16 elequ2 x=zuxuz
17 elequ2 x=zvxvz
18 16 17 anbi12d x=zuxvxuzvz
19 18 cbvrexvw xAuxvxzAuzvz
20 15 19 imbitrdi PrtAxAyAuxwxwyvyzAuzvz