Metamath Proof Explorer


Theorem prv

Description: The "proves" relation on a set. A wff encoded as U is true in a model M iff for every valuation s e. ( M ^m _om ) , the interpretation of the wff using the membership relation on M is true. (Contributed by AV, 5-Nov-2023)

Ref Expression
Assertion prv MVUWMUMSatU=Mω

Proof

Step Hyp Ref Expression
1 oveq12 m=Mu=UmSatu=MSatU
2 simpl m=Mu=Um=M
3 2 oveq1d m=Mu=Umω=Mω
4 1 3 eqeq12d m=Mu=UmSatu=mωMSatU=Mω
5 df-prv =mu|mSatu=mω
6 4 5 brabga MVUWMUMSatU=Mω