Description: The wff ( A e. B -/\ B e. A ) encoded as ( ( A e.g B ) |g ( B e.g A ) ) is true in any model M . This is the model theoretic proof of elnanel . (Contributed by AV, 5-Nov-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | elnanelprv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 | |
|
2 | 3simpc | |
|
3 | pm3.22 | |
|
4 | 3 | 3adant1 | |
5 | eqid | |
|
6 | 5 | satefvfmla1 | |
7 | 1 2 4 6 | syl3anc | |
8 | elnanel | |
|
9 | nanor | |
|
10 | 8 9 | mpbi | |
11 | 10 | a1i | |
12 | 11 | rabeqc | |
13 | 7 12 | eqtrdi | |
14 | ovex | |
|
15 | prv | |
|
16 | 1 14 15 | sylancl | |
17 | 13 16 | mpbird | |