Metamath Proof Explorer


Theorem elnanelprv

Description: The wff ( A e. B -/\ B e. A ) encoded as ( ( A e.g B ) |g ( B e.g A ) ) is true in any model M . This is the model theoretic proof of elnanel . (Contributed by AV, 5-Nov-2023)

Ref Expression
Assertion elnanelprv MVAωBωMA𝑔B𝑔B𝑔A

Proof

Step Hyp Ref Expression
1 simp1 MVAωBωMV
2 3simpc MVAωBωAωBω
3 pm3.22 AωBωBωAω
4 3 3adant1 MVAωBωBωAω
5 eqid A𝑔B𝑔B𝑔A=A𝑔B𝑔B𝑔A
6 5 satefvfmla1 MVAωBωBωAωMSatA𝑔B𝑔B𝑔A=aMω|¬aAaB¬aBaA
7 1 2 4 6 syl3anc MVAωBωMSatA𝑔B𝑔B𝑔A=aMω|¬aAaB¬aBaA
8 elnanel aAaBaBaA
9 nanor aAaBaBaA¬aAaB¬aBaA
10 8 9 mpbi ¬aAaB¬aBaA
11 10 a1i aMω¬aAaB¬aBaA
12 11 rabeqc aMω|¬aAaB¬aBaA=Mω
13 7 12 eqtrdi MVAωBωMSatA𝑔B𝑔B𝑔A=Mω
14 ovex A𝑔B𝑔B𝑔AV
15 prv MVA𝑔B𝑔B𝑔AVMA𝑔B𝑔B𝑔AMSatA𝑔B𝑔B𝑔A=Mω
16 1 14 15 sylancl MVAωBωMA𝑔B𝑔B𝑔AMSatA𝑔B𝑔B𝑔A=Mω
17 13 16 mpbird MVAωBωMA𝑔B𝑔B𝑔A