Metamath Proof Explorer


Theorem psgnfn

Description: Functionality and domain of the permutation sign function. (Contributed by Stefan O'Rear, 28-Aug-2015)

Ref Expression
Hypotheses psgnfn.g G=SymGrpD
psgnfn.b B=BaseG
psgnfn.f F=pB|dompIFin
psgnfn.n N=pmSgnD
Assertion psgnfn NFnF

Proof

Step Hyp Ref Expression
1 psgnfn.g G=SymGrpD
2 psgnfn.b B=BaseG
3 psgnfn.f F=pB|dompIFin
4 psgnfn.n N=pmSgnD
5 iotaex ιs|wWordranpmTrspDx=Gws=1wV
6 eqid ranpmTrspD=ranpmTrspD
7 1 2 3 6 4 psgnfval N=xFιs|wWordranpmTrspDx=Gws=1w
8 5 7 fnmpti NFnF