Metamath Proof Explorer


Theorem psr1sca2

Description: Scalars of a univariate power series ring. (Contributed by Stefan O'Rear, 26-Mar-2015) (Revised by Mario Carneiro, 4-Jul-2015)

Ref Expression
Hypothesis psr1lmod.p P=PwSer1R
Assertion psr1sca2 IR=ScalarP

Proof

Step Hyp Ref Expression
1 psr1lmod.p P=PwSer1R
2 fvi RVIR=R
3 1 psr1sca RVR=ScalarP
4 2 3 eqtrd RVIR=ScalarP
5 scaid Scalar=SlotScalarndx
6 5 str0 =Scalar
7 fvprc ¬RVIR=
8 fvprc ¬RVPwSer1R=
9 1 8 eqtrid ¬RVP=
10 9 fveq2d ¬RVScalarP=Scalar
11 6 7 10 3eqtr4a ¬RVIR=ScalarP
12 4 11 pm2.61i IR=ScalarP