Metamath Proof Explorer


Theorem psrelbasfun

Description: An element of the set of power series is a function. (Contributed by AV, 17-Jul-2019)

Ref Expression
Hypotheses psrelbasfun.s S=ImPwSerR
psrelbasfun.b B=BaseS
Assertion psrelbasfun XBFunX

Proof

Step Hyp Ref Expression
1 psrelbasfun.s S=ImPwSerR
2 psrelbasfun.b B=BaseS
3 eqid BaseR=BaseR
4 eqid f0I|f-1Fin=f0I|f-1Fin
5 id XBXB
6 1 3 4 2 5 psrelbas XBX:f0I|f-1FinBaseR
7 6 ffund XBFunX