Metamath Proof Explorer


Theorem pssdifcom1

Description: Two ways to express overlapping subsets. (Contributed by Stefan O'Rear, 31-Oct-2014)

Ref Expression
Assertion pssdifcom1 ACBCCABCBA

Proof

Step Hyp Ref Expression
1 difcom CABCBA
2 1 a1i ACBCCABCBA
3 ssconb BCACBCAACB
4 3 ancoms ACBCBCAACB
5 4 notbid ACBC¬BCA¬ACB
6 2 5 anbi12d ACBCCAB¬BCACBA¬ACB
7 dfpss3 CABCAB¬BCA
8 dfpss3 CBACBA¬ACB
9 6 7 8 3bitr4g ACBCCABCBA