Metamath Proof Explorer


Theorem psshepw

Description: The relation between sets and their proper subsets is hereditary in the powerclass of any class. (Contributed by RP, 28-Mar-2020)

Ref Expression
Assertion psshepw [⊂]-1hereditary𝒫A

Proof

Step Hyp Ref Expression
1 dfhe3 [⊂]-1hereditary𝒫Axx𝒫Ayx[⊂]-1yy𝒫A
2 sstr2 yxxAyA
3 pssss yxyx
4 2 3 syl11 xAyxyA
5 4 alrimiv xAyyxyA
6 velpw x𝒫AxA
7 vex xV
8 vex yV
9 7 8 brcnv x[⊂]-1yy[⊂]x
10 7 brrpss y[⊂]xyx
11 9 10 bitri x[⊂]-1yyx
12 velpw y𝒫AyA
13 11 12 imbi12i x[⊂]-1yy𝒫AyxyA
14 13 albii yx[⊂]-1yy𝒫AyyxyA
15 5 6 14 3imtr4i x𝒫Ayx[⊂]-1yy𝒫A
16 1 15 mpgbir [⊂]-1hereditary𝒫A