Metamath Proof Explorer


Theorem psshepw

Description: The relation between sets and their proper subsets is hereditary in the powerclass of any class. (Contributed by RP, 28-Mar-2020)

Ref Expression
Assertion psshepw [⊂] -1 hereditary 𝒫 A

Proof

Step Hyp Ref Expression
1 dfhe3 [⊂] -1 hereditary 𝒫 A x x 𝒫 A y x [⊂] -1 y y 𝒫 A
2 sstr2 y x x A y A
3 pssss y x y x
4 2 3 syl11 x A y x y A
5 4 alrimiv x A y y x y A
6 velpw x 𝒫 A x A
7 vex x V
8 vex y V
9 7 8 brcnv x [⊂] -1 y y [⊂] x
10 7 brrpss y [⊂] x y x
11 9 10 bitri x [⊂] -1 y y x
12 velpw y 𝒫 A y A
13 11 12 imbi12i x [⊂] -1 y y 𝒫 A y x y A
14 13 albii y x [⊂] -1 y y 𝒫 A y y x y A
15 5 6 14 3imtr4i x 𝒫 A y x [⊂] -1 y y 𝒫 A
16 1 15 mpgbir [⊂] -1 hereditary 𝒫 A