Step |
Hyp |
Ref |
Expression |
1 |
|
dfhe3 |
|- ( `' [C.] hereditary ~P A <-> A. x ( x e. ~P A -> A. y ( x `' [C.] y -> y e. ~P A ) ) ) |
2 |
|
sstr2 |
|- ( y C_ x -> ( x C_ A -> y C_ A ) ) |
3 |
|
pssss |
|- ( y C. x -> y C_ x ) |
4 |
2 3
|
syl11 |
|- ( x C_ A -> ( y C. x -> y C_ A ) ) |
5 |
4
|
alrimiv |
|- ( x C_ A -> A. y ( y C. x -> y C_ A ) ) |
6 |
|
velpw |
|- ( x e. ~P A <-> x C_ A ) |
7 |
|
vex |
|- x e. _V |
8 |
|
vex |
|- y e. _V |
9 |
7 8
|
brcnv |
|- ( x `' [C.] y <-> y [C.] x ) |
10 |
7
|
brrpss |
|- ( y [C.] x <-> y C. x ) |
11 |
9 10
|
bitri |
|- ( x `' [C.] y <-> y C. x ) |
12 |
|
velpw |
|- ( y e. ~P A <-> y C_ A ) |
13 |
11 12
|
imbi12i |
|- ( ( x `' [C.] y -> y e. ~P A ) <-> ( y C. x -> y C_ A ) ) |
14 |
13
|
albii |
|- ( A. y ( x `' [C.] y -> y e. ~P A ) <-> A. y ( y C. x -> y C_ A ) ) |
15 |
5 6 14
|
3imtr4i |
|- ( x e. ~P A -> A. y ( x `' [C.] y -> y e. ~P A ) ) |
16 |
1 15
|
mpgbir |
|- `' [C.] hereditary ~P A |