| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfhe3 |
⊢ ( ◡ [⊊] hereditary 𝒫 𝐴 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝒫 𝐴 → ∀ 𝑦 ( 𝑥 ◡ [⊊] 𝑦 → 𝑦 ∈ 𝒫 𝐴 ) ) ) |
| 2 |
|
sstr2 |
⊢ ( 𝑦 ⊆ 𝑥 → ( 𝑥 ⊆ 𝐴 → 𝑦 ⊆ 𝐴 ) ) |
| 3 |
|
pssss |
⊢ ( 𝑦 ⊊ 𝑥 → 𝑦 ⊆ 𝑥 ) |
| 4 |
2 3
|
syl11 |
⊢ ( 𝑥 ⊆ 𝐴 → ( 𝑦 ⊊ 𝑥 → 𝑦 ⊆ 𝐴 ) ) |
| 5 |
4
|
alrimiv |
⊢ ( 𝑥 ⊆ 𝐴 → ∀ 𝑦 ( 𝑦 ⊊ 𝑥 → 𝑦 ⊆ 𝐴 ) ) |
| 6 |
|
velpw |
⊢ ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴 ) |
| 7 |
|
vex |
⊢ 𝑥 ∈ V |
| 8 |
|
vex |
⊢ 𝑦 ∈ V |
| 9 |
7 8
|
brcnv |
⊢ ( 𝑥 ◡ [⊊] 𝑦 ↔ 𝑦 [⊊] 𝑥 ) |
| 10 |
7
|
brrpss |
⊢ ( 𝑦 [⊊] 𝑥 ↔ 𝑦 ⊊ 𝑥 ) |
| 11 |
9 10
|
bitri |
⊢ ( 𝑥 ◡ [⊊] 𝑦 ↔ 𝑦 ⊊ 𝑥 ) |
| 12 |
|
velpw |
⊢ ( 𝑦 ∈ 𝒫 𝐴 ↔ 𝑦 ⊆ 𝐴 ) |
| 13 |
11 12
|
imbi12i |
⊢ ( ( 𝑥 ◡ [⊊] 𝑦 → 𝑦 ∈ 𝒫 𝐴 ) ↔ ( 𝑦 ⊊ 𝑥 → 𝑦 ⊆ 𝐴 ) ) |
| 14 |
13
|
albii |
⊢ ( ∀ 𝑦 ( 𝑥 ◡ [⊊] 𝑦 → 𝑦 ∈ 𝒫 𝐴 ) ↔ ∀ 𝑦 ( 𝑦 ⊊ 𝑥 → 𝑦 ⊆ 𝐴 ) ) |
| 15 |
5 6 14
|
3imtr4i |
⊢ ( 𝑥 ∈ 𝒫 𝐴 → ∀ 𝑦 ( 𝑥 ◡ [⊊] 𝑦 → 𝑦 ∈ 𝒫 𝐴 ) ) |
| 16 |
1 15
|
mpgbir |
⊢ ◡ [⊊] hereditary 𝒫 𝐴 |