Metamath Proof Explorer


Theorem pstr2

Description: A poset is transitive. (Contributed by FL, 3-Aug-2009)

Ref Expression
Assertion pstr2 RPosetRelRRR

Proof

Step Hyp Ref Expression
1 isps RPosetRelRPosetRelRelRRRRRR-1=IR
2 1 ibi RPosetRelRelRRRRRR-1=IR
3 2 simp2d RPosetRelRRR