Metamath Proof Explorer


Theorem pthdifv

Description: The vertices of a path are distinct (except the first and last vertex), so the restricted vertex function is one-to-one. (Contributed by AV, 2-Oct-2025)

Ref Expression
Assertion pthdifv F Paths G P P 1 F : 1 F 1-1 Vtx G

Proof

Step Hyp Ref Expression
1 trliswlk F Trails G P F Walks G P
2 eqid Vtx G = Vtx G
3 2 wlkp F Walks G P P : 0 F Vtx G
4 fz1ssfz0 1 F 0 F
5 4 a1i F Walks G P 1 F 0 F
6 3 5 fssresd F Walks G P P 1 F : 1 F Vtx G
7 1 6 syl F Trails G P P 1 F : 1 F Vtx G
8 7 anim1i F Trails G P Fun P 1 F -1 P 1 F : 1 F Vtx G Fun P 1 F -1
9 8 3adant3 F Trails G P Fun P 1 F -1 P 0 P 1 ..^ F P 1 F : 1 F Vtx G Fun P 1 F -1
10 dfpth2 F Paths G P F Trails G P Fun P 1 F -1 P 0 P 1 ..^ F
11 df-f1 P 1 F : 1 F 1-1 Vtx G P 1 F : 1 F Vtx G Fun P 1 F -1
12 9 10 11 3imtr4i F Paths G P P 1 F : 1 F 1-1 Vtx G