Metamath Proof Explorer


Theorem 2pthnloop

Description: A path of length at least 2 does not contain a loop. In contrast, a path of length 1 can contain/be a loop, see lppthon . (Contributed by AV, 6-Feb-2021)

Ref Expression
Hypothesis 2pthnloop.i I=iEdgG
Assertion 2pthnloop FPathsGP1<Fi0..^F2IFi

Proof

Step Hyp Ref Expression
1 2pthnloop.i I=iEdgG
2 pthiswlk FPathsGPFWalksGP
3 wlkv FWalksGPGVFVPV
4 2 3 syl FPathsGPGVFVPV
5 ispth FPathsGPFTrailsGPFunP1..^F-1P0FP1..^F=
6 istrl FTrailsGPFWalksGPFunF-1
7 eqid VtxG=VtxG
8 7 1 iswlkg GVFWalksGPFWorddomIP:0FVtxGi0..^Fif-Pi=Pi+1IFi=PiPiPi+1IFi
9 8 anbi1d GVFWalksGPFunF-1FWorddomIP:0FVtxGi0..^Fif-Pi=Pi+1IFi=PiPiPi+1IFiFunF-1
10 6 9 bitrid GVFTrailsGPFWorddomIP:0FVtxGi0..^Fif-Pi=Pi+1IFi=PiPiPi+1IFiFunF-1
11 pthdadjvtx FPathsGP1<Fi0..^FPiPi+1
12 11 ad5ant245 FWorddomIP:0FVtxGFPathsGPFunF-1P0FP1..^F=FunP1..^F-11<Fi0..^FPiPi+1
13 12 neneqd FWorddomIP:0FVtxGFPathsGPFunF-1P0FP1..^F=FunP1..^F-11<Fi0..^F¬Pi=Pi+1
14 ifpfal ¬Pi=Pi+1if-Pi=Pi+1IFi=PiPiPi+1IFiPiPi+1IFi
15 14 adantl FWorddomIP:0FVtxGFPathsGPFunF-1P0FP1..^F=FunP1..^F-11<Fi0..^F¬Pi=Pi+1if-Pi=Pi+1IFi=PiPiPi+1IFiPiPi+1IFi
16 fvexd ¬Pi=Pi+1PiV
17 fvexd ¬Pi=Pi+1Pi+1V
18 neqne ¬Pi=Pi+1PiPi+1
19 fvexd ¬Pi=Pi+1IFiV
20 prsshashgt1 PiVPi+1VPiPi+1IFiVPiPi+1IFi2IFi
21 16 17 18 19 20 syl31anc ¬Pi=Pi+1PiPi+1IFi2IFi
22 21 adantl FWorddomIP:0FVtxGFPathsGPFunF-1P0FP1..^F=FunP1..^F-11<Fi0..^F¬Pi=Pi+1PiPi+1IFi2IFi
23 15 22 sylbid FWorddomIP:0FVtxGFPathsGPFunF-1P0FP1..^F=FunP1..^F-11<Fi0..^F¬Pi=Pi+1if-Pi=Pi+1IFi=PiPiPi+1IFi2IFi
24 13 23 mpdan FWorddomIP:0FVtxGFPathsGPFunF-1P0FP1..^F=FunP1..^F-11<Fi0..^Fif-Pi=Pi+1IFi=PiPiPi+1IFi2IFi
25 24 ralimdva FWorddomIP:0FVtxGFPathsGPFunF-1P0FP1..^F=FunP1..^F-11<Fi0..^Fif-Pi=Pi+1IFi=PiPiPi+1IFii0..^F2IFi
26 25 ex FWorddomIP:0FVtxGFPathsGPFunF-1P0FP1..^F=FunP1..^F-11<Fi0..^Fif-Pi=Pi+1IFi=PiPiPi+1IFii0..^F2IFi
27 26 com23 FWorddomIP:0FVtxGFPathsGPFunF-1P0FP1..^F=FunP1..^F-1i0..^Fif-Pi=Pi+1IFi=PiPiPi+1IFi1<Fi0..^F2IFi
28 27 exp31 FWorddomIP:0FVtxGFPathsGPFunF-1P0FP1..^F=FunP1..^F-1i0..^Fif-Pi=Pi+1IFi=PiPiPi+1IFi1<Fi0..^F2IFi
29 28 com24 FWorddomIP:0FVtxGi0..^Fif-Pi=Pi+1IFi=PiPiPi+1IFiFunF-1P0FP1..^F=FunP1..^F-1FPathsGP1<Fi0..^F2IFi
30 29 3impia FWorddomIP:0FVtxGi0..^Fif-Pi=Pi+1IFi=PiPiPi+1IFiFunF-1P0FP1..^F=FunP1..^F-1FPathsGP1<Fi0..^F2IFi
31 30 exp4c FWorddomIP:0FVtxGi0..^Fif-Pi=Pi+1IFi=PiPiPi+1IFiFunF-1P0FP1..^F=FunP1..^F-1FPathsGP1<Fi0..^F2IFi
32 31 imp FWorddomIP:0FVtxGi0..^Fif-Pi=Pi+1IFi=PiPiPi+1IFiFunF-1P0FP1..^F=FunP1..^F-1FPathsGP1<Fi0..^F2IFi
33 10 32 syl6bi GVFTrailsGPP0FP1..^F=FunP1..^F-1FPathsGP1<Fi0..^F2IFi
34 33 com24 GVFunP1..^F-1P0FP1..^F=FTrailsGPFPathsGP1<Fi0..^F2IFi
35 34 com14 FTrailsGPFunP1..^F-1P0FP1..^F=GVFPathsGP1<Fi0..^F2IFi
36 35 3imp FTrailsGPFunP1..^F-1P0FP1..^F=GVFPathsGP1<Fi0..^F2IFi
37 36 com12 GVFTrailsGPFunP1..^F-1P0FP1..^F=FPathsGP1<Fi0..^F2IFi
38 5 37 biimtrid GVFPathsGPFPathsGP1<Fi0..^F2IFi
39 38 3ad2ant1 GVFVPVFPathsGPFPathsGP1<Fi0..^F2IFi
40 4 39 mpcom FPathsGPFPathsGP1<Fi0..^F2IFi
41 40 pm2.43i FPathsGP1<Fi0..^F2IFi
42 41 imp FPathsGP1<Fi0..^F2IFi