Metamath Proof Explorer


Theorem pwscmn

Description: The structure power on a commutative monoid is commutative. (Contributed by Mario Carneiro, 11-Jan-2015)

Ref Expression
Hypothesis pwscmn.y Y=R𝑠I
Assertion pwscmn RCMndIVYCMnd

Proof

Step Hyp Ref Expression
1 pwscmn.y Y=R𝑠I
2 eqid ScalarR=ScalarR
3 1 2 pwsval RCMndIVY=ScalarR𝑠I×R
4 eqid ScalarR𝑠I×R=ScalarR𝑠I×R
5 simpr RCMndIVIV
6 fvexd RCMndIVScalarRV
7 fconst6g RCMndI×R:ICMnd
8 7 adantr RCMndIVI×R:ICMnd
9 4 5 6 8 prdscmnd RCMndIVScalarR𝑠I×RCMnd
10 3 9 eqeltrd RCMndIVYCMnd