Metamath Proof Explorer


Theorem pwtrVD

Description: Virtual deduction proof of pwtr ; see pwtrrVD for the converse. (Contributed by Alan Sare, 25-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion pwtrVD TrATr𝒫A

Proof

Step Hyp Ref Expression
1 dftr2 Tr𝒫Azyzyy𝒫Az𝒫A
2 idn1 TrATrA
3 idn2 TrA,zyy𝒫Azyy𝒫A
4 simpr zyy𝒫Ay𝒫A
5 3 4 e2 TrA,zyy𝒫Ay𝒫A
6 elpwi y𝒫AyA
7 5 6 e2 TrA,zyy𝒫AyA
8 simpl zyy𝒫Azy
9 3 8 e2 TrA,zyy𝒫Azy
10 ssel yAzyzA
11 7 9 10 e22 TrA,zyy𝒫AzA
12 trss TrAzAzA
13 2 11 12 e12 TrA,zyy𝒫AzA
14 vex zV
15 14 elpw z𝒫AzA
16 13 15 e2bir TrA,zyy𝒫Az𝒫A
17 16 in2 TrAzyy𝒫Az𝒫A
18 17 gen12 TrAzyzyy𝒫Az𝒫A
19 biimpr Tr𝒫Azyzyy𝒫Az𝒫Azyzyy𝒫Az𝒫ATr𝒫A
20 1 18 19 e01 TrATr𝒫A
21 20 in1 TrATr𝒫A