Description: Virtual deduction proof of pwtr ; see pwtrrVD for the converse. (Contributed by Alan Sare, 25-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | pwtrVD | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dftr2 | |
|
2 | idn1 | |
|
3 | idn2 | |
|
4 | simpr | |
|
5 | 3 4 | e2 | |
6 | elpwi | |
|
7 | 5 6 | e2 | |
8 | simpl | |
|
9 | 3 8 | e2 | |
10 | ssel | |
|
11 | 7 9 10 | e22 | |
12 | trss | |
|
13 | 2 11 12 | e12 | |
14 | vex | |
|
15 | 14 | elpw | |
16 | 13 15 | e2bir | |
17 | 16 | in2 | |
18 | 17 | gen12 | |
19 | biimpr | |
|
20 | 1 18 19 | e01 | |
21 | 20 | in1 | |