Metamath Proof Explorer


Theorem pwtrVD

Description: Virtual deduction proof of pwtr ; see pwtrrVD for the converse. (Contributed by Alan Sare, 25-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion pwtrVD ( Tr 𝐴 → Tr 𝒫 𝐴 )

Proof

Step Hyp Ref Expression
1 dftr2 ( Tr 𝒫 𝐴 ↔ ∀ 𝑧𝑦 ( ( 𝑧𝑦𝑦 ∈ 𝒫 𝐴 ) → 𝑧 ∈ 𝒫 𝐴 ) )
2 idn1 (    Tr 𝐴    ▶    Tr 𝐴    )
3 idn2 (    Tr 𝐴    ,    ( 𝑧𝑦𝑦 ∈ 𝒫 𝐴 )    ▶    ( 𝑧𝑦𝑦 ∈ 𝒫 𝐴 )    )
4 simpr ( ( 𝑧𝑦𝑦 ∈ 𝒫 𝐴 ) → 𝑦 ∈ 𝒫 𝐴 )
5 3 4 e2 (    Tr 𝐴    ,    ( 𝑧𝑦𝑦 ∈ 𝒫 𝐴 )    ▶    𝑦 ∈ 𝒫 𝐴    )
6 elpwi ( 𝑦 ∈ 𝒫 𝐴𝑦𝐴 )
7 5 6 e2 (    Tr 𝐴    ,    ( 𝑧𝑦𝑦 ∈ 𝒫 𝐴 )    ▶    𝑦𝐴    )
8 simpl ( ( 𝑧𝑦𝑦 ∈ 𝒫 𝐴 ) → 𝑧𝑦 )
9 3 8 e2 (    Tr 𝐴    ,    ( 𝑧𝑦𝑦 ∈ 𝒫 𝐴 )    ▶    𝑧𝑦    )
10 ssel ( 𝑦𝐴 → ( 𝑧𝑦𝑧𝐴 ) )
11 7 9 10 e22 (    Tr 𝐴    ,    ( 𝑧𝑦𝑦 ∈ 𝒫 𝐴 )    ▶    𝑧𝐴    )
12 trss ( Tr 𝐴 → ( 𝑧𝐴𝑧𝐴 ) )
13 2 11 12 e12 (    Tr 𝐴    ,    ( 𝑧𝑦𝑦 ∈ 𝒫 𝐴 )    ▶    𝑧𝐴    )
14 vex 𝑧 ∈ V
15 14 elpw ( 𝑧 ∈ 𝒫 𝐴𝑧𝐴 )
16 13 15 e2bir (    Tr 𝐴    ,    ( 𝑧𝑦𝑦 ∈ 𝒫 𝐴 )    ▶    𝑧 ∈ 𝒫 𝐴    )
17 16 in2 (    Tr 𝐴    ▶    ( ( 𝑧𝑦𝑦 ∈ 𝒫 𝐴 ) → 𝑧 ∈ 𝒫 𝐴 )    )
18 17 gen12 (    Tr 𝐴    ▶   𝑧𝑦 ( ( 𝑧𝑦𝑦 ∈ 𝒫 𝐴 ) → 𝑧 ∈ 𝒫 𝐴 )    )
19 biimpr ( ( Tr 𝒫 𝐴 ↔ ∀ 𝑧𝑦 ( ( 𝑧𝑦𝑦 ∈ 𝒫 𝐴 ) → 𝑧 ∈ 𝒫 𝐴 ) ) → ( ∀ 𝑧𝑦 ( ( 𝑧𝑦𝑦 ∈ 𝒫 𝐴 ) → 𝑧 ∈ 𝒫 𝐴 ) → Tr 𝒫 𝐴 ) )
20 1 18 19 e01 (    Tr 𝐴    ▶    Tr 𝒫 𝐴    )
21 20 in1 ( Tr 𝐴 → Tr 𝒫 𝐴 )