Metamath Proof Explorer


Theorem pwtrrVD

Description: Virtual deduction proof of pwtr ; see pwtrVD for the converse. (Contributed by Alan Sare, 25-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis pwtrrVD.1 𝐴 ∈ V
Assertion pwtrrVD ( Tr 𝒫 𝐴 → Tr 𝐴 )

Proof

Step Hyp Ref Expression
1 pwtrrVD.1 𝐴 ∈ V
2 dftr2 ( Tr 𝐴 ↔ ∀ 𝑧𝑦 ( ( 𝑧𝑦𝑦𝐴 ) → 𝑧𝐴 ) )
3 idn1 (    Tr 𝒫 𝐴    ▶    Tr 𝒫 𝐴    )
4 idn2 (    Tr 𝒫 𝐴    ,    ( 𝑧𝑦𝑦𝐴 )    ▶    ( 𝑧𝑦𝑦𝐴 )    )
5 simpr ( ( 𝑧𝑦𝑦𝐴 ) → 𝑦𝐴 )
6 4 5 e2 (    Tr 𝒫 𝐴    ,    ( 𝑧𝑦𝑦𝐴 )    ▶    𝑦𝐴    )
7 1 pwid 𝐴 ∈ 𝒫 𝐴
8 trel ( Tr 𝒫 𝐴 → ( ( 𝑦𝐴𝐴 ∈ 𝒫 𝐴 ) → 𝑦 ∈ 𝒫 𝐴 ) )
9 8 expd ( Tr 𝒫 𝐴 → ( 𝑦𝐴 → ( 𝐴 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝐴 ) ) )
10 3 6 7 9 e120 (    Tr 𝒫 𝐴    ,    ( 𝑧𝑦𝑦𝐴 )    ▶    𝑦 ∈ 𝒫 𝐴    )
11 elpwi ( 𝑦 ∈ 𝒫 𝐴𝑦𝐴 )
12 10 11 e2 (    Tr 𝒫 𝐴    ,    ( 𝑧𝑦𝑦𝐴 )    ▶    𝑦𝐴    )
13 simpl ( ( 𝑧𝑦𝑦𝐴 ) → 𝑧𝑦 )
14 4 13 e2 (    Tr 𝒫 𝐴    ,    ( 𝑧𝑦𝑦𝐴 )    ▶    𝑧𝑦    )
15 ssel ( 𝑦𝐴 → ( 𝑧𝑦𝑧𝐴 ) )
16 12 14 15 e22 (    Tr 𝒫 𝐴    ,    ( 𝑧𝑦𝑦𝐴 )    ▶    𝑧𝐴    )
17 16 in2 (    Tr 𝒫 𝐴    ▶    ( ( 𝑧𝑦𝑦𝐴 ) → 𝑧𝐴 )    )
18 17 gen12 (    Tr 𝒫 𝐴    ▶   𝑧𝑦 ( ( 𝑧𝑦𝑦𝐴 ) → 𝑧𝐴 )    )
19 biimpr ( ( Tr 𝐴 ↔ ∀ 𝑧𝑦 ( ( 𝑧𝑦𝑦𝐴 ) → 𝑧𝐴 ) ) → ( ∀ 𝑧𝑦 ( ( 𝑧𝑦𝑦𝐴 ) → 𝑧𝐴 ) → Tr 𝐴 ) )
20 2 18 19 e01 (    Tr 𝒫 𝐴    ▶    Tr 𝐴    )
21 20 in1 ( Tr 𝒫 𝐴 → Tr 𝐴 )