| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sssucid | ⊢ 𝐴  ⊆  suc  𝐴 | 
						
							| 2 |  | id | ⊢ ( Tr  𝐴  →  Tr  𝐴 ) | 
						
							| 3 |  | id | ⊢ ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  suc  𝐴 )  →  ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  suc  𝐴 ) ) | 
						
							| 4 | 3 | simpld | ⊢ ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  suc  𝐴 )  →  𝑧  ∈  𝑦 ) | 
						
							| 5 |  | id | ⊢ ( 𝑦  ∈  𝐴  →  𝑦  ∈  𝐴 ) | 
						
							| 6 |  | trel | ⊢ ( Tr  𝐴  →  ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) ) | 
						
							| 7 | 6 | 3impib | ⊢ ( ( Tr  𝐴  ∧  𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) | 
						
							| 8 | 7 | idiALT | ⊢ ( ( Tr  𝐴  ∧  𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) | 
						
							| 9 | 2 4 5 8 | syl3an | ⊢ ( ( Tr  𝐴  ∧  ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  suc  𝐴 )  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) | 
						
							| 10 | 1 9 | sselid | ⊢ ( ( Tr  𝐴  ∧  ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  suc  𝐴 )  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  suc  𝐴 ) | 
						
							| 11 | 10 | 3expia | ⊢ ( ( Tr  𝐴  ∧  ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  suc  𝐴 ) )  →  ( 𝑦  ∈  𝐴  →  𝑧  ∈  suc  𝐴 ) ) | 
						
							| 12 | 4 | adantr | ⊢ ( ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  suc  𝐴 )  ∧  𝑦  =  𝐴 )  →  𝑧  ∈  𝑦 ) | 
						
							| 13 |  | id | ⊢ ( 𝑦  =  𝐴  →  𝑦  =  𝐴 ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  suc  𝐴 )  ∧  𝑦  =  𝐴 )  →  𝑦  =  𝐴 ) | 
						
							| 15 | 12 14 | eleqtrd | ⊢ ( ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  suc  𝐴 )  ∧  𝑦  =  𝐴 )  →  𝑧  ∈  𝐴 ) | 
						
							| 16 | 1 15 | sselid | ⊢ ( ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  suc  𝐴 )  ∧  𝑦  =  𝐴 )  →  𝑧  ∈  suc  𝐴 ) | 
						
							| 17 | 16 | ex | ⊢ ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  suc  𝐴 )  →  ( 𝑦  =  𝐴  →  𝑧  ∈  suc  𝐴 ) ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( Tr  𝐴  ∧  ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  suc  𝐴 ) )  →  ( 𝑦  =  𝐴  →  𝑧  ∈  suc  𝐴 ) ) | 
						
							| 19 | 3 | simprd | ⊢ ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  suc  𝐴 )  →  𝑦  ∈  suc  𝐴 ) | 
						
							| 20 |  | elsuci | ⊢ ( 𝑦  ∈  suc  𝐴  →  ( 𝑦  ∈  𝐴  ∨  𝑦  =  𝐴 ) ) | 
						
							| 21 | 19 20 | syl | ⊢ ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  suc  𝐴 )  →  ( 𝑦  ∈  𝐴  ∨  𝑦  =  𝐴 ) ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( Tr  𝐴  ∧  ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  suc  𝐴 ) )  →  ( 𝑦  ∈  𝐴  ∨  𝑦  =  𝐴 ) ) | 
						
							| 23 | 11 18 22 | mpjaod | ⊢ ( ( Tr  𝐴  ∧  ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  suc  𝐴 ) )  →  𝑧  ∈  suc  𝐴 ) | 
						
							| 24 | 23 | ex | ⊢ ( Tr  𝐴  →  ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  suc  𝐴 )  →  𝑧  ∈  suc  𝐴 ) ) | 
						
							| 25 | 24 | alrimivv | ⊢ ( Tr  𝐴  →  ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  suc  𝐴 )  →  𝑧  ∈  suc  𝐴 ) ) | 
						
							| 26 |  | dftr2 | ⊢ ( Tr  suc  𝐴  ↔  ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  suc  𝐴 )  →  𝑧  ∈  suc  𝐴 ) ) | 
						
							| 27 | 26 | biimpri | ⊢ ( ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  suc  𝐴 )  →  𝑧  ∈  suc  𝐴 )  →  Tr  suc  𝐴 ) | 
						
							| 28 | 25 27 | syl | ⊢ ( Tr  𝐴  →  Tr  suc  𝐴 ) |