| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sssucid |
⊢ 𝐴 ⊆ suc 𝐴 |
| 2 |
|
id |
⊢ ( Tr 𝐴 → Tr 𝐴 ) |
| 3 |
|
id |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ) |
| 4 |
3
|
simpld |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ 𝑦 ) |
| 5 |
|
id |
⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐴 ) |
| 6 |
|
trel |
⊢ ( Tr 𝐴 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) |
| 7 |
6
|
3impib |
⊢ ( ( Tr 𝐴 ∧ 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) |
| 8 |
7
|
idiALT |
⊢ ( ( Tr 𝐴 ∧ 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) |
| 9 |
2 4 5 8
|
syl3an |
⊢ ( ( Tr 𝐴 ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) |
| 10 |
1 9
|
sselid |
⊢ ( ( Tr 𝐴 ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ suc 𝐴 ) |
| 11 |
10
|
3expia |
⊢ ( ( Tr 𝐴 ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ) → ( 𝑦 ∈ 𝐴 → 𝑧 ∈ suc 𝐴 ) ) |
| 12 |
4
|
adantr |
⊢ ( ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ∧ 𝑦 = 𝐴 ) → 𝑧 ∈ 𝑦 ) |
| 13 |
|
id |
⊢ ( 𝑦 = 𝐴 → 𝑦 = 𝐴 ) |
| 14 |
13
|
adantl |
⊢ ( ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ∧ 𝑦 = 𝐴 ) → 𝑦 = 𝐴 ) |
| 15 |
12 14
|
eleqtrd |
⊢ ( ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ∧ 𝑦 = 𝐴 ) → 𝑧 ∈ 𝐴 ) |
| 16 |
1 15
|
sselid |
⊢ ( ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ∧ 𝑦 = 𝐴 ) → 𝑧 ∈ suc 𝐴 ) |
| 17 |
16
|
ex |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → ( 𝑦 = 𝐴 → 𝑧 ∈ suc 𝐴 ) ) |
| 18 |
17
|
adantl |
⊢ ( ( Tr 𝐴 ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ) → ( 𝑦 = 𝐴 → 𝑧 ∈ suc 𝐴 ) ) |
| 19 |
3
|
simprd |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑦 ∈ suc 𝐴 ) |
| 20 |
|
elsuci |
⊢ ( 𝑦 ∈ suc 𝐴 → ( 𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴 ) ) |
| 21 |
19 20
|
syl |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → ( 𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴 ) ) |
| 22 |
21
|
adantl |
⊢ ( ( Tr 𝐴 ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ) → ( 𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴 ) ) |
| 23 |
11 18 22
|
mpjaod |
⊢ ( ( Tr 𝐴 ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ) → 𝑧 ∈ suc 𝐴 ) |
| 24 |
23
|
ex |
⊢ ( Tr 𝐴 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 ) ) |
| 25 |
24
|
alrimivv |
⊢ ( Tr 𝐴 → ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 ) ) |
| 26 |
|
dftr2 |
⊢ ( Tr suc 𝐴 ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 ) ) |
| 27 |
26
|
biimpri |
⊢ ( ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 ) → Tr suc 𝐴 ) |
| 28 |
25 27
|
syl |
⊢ ( Tr 𝐴 → Tr suc 𝐴 ) |