Metamath Proof Explorer


Theorem suctrALT

Description: The successor of a transitive class is transitive. The proof of https://us.metamath.org/other/completeusersproof/suctrvd.html is a Virtual Deduction proof verified by automatically transforming it into the Metamath proof of suctrALT using completeusersproof, which is verified by the Metamath program. The proof of https://us.metamath.org/other/completeusersproof/suctrro.html is a form of the completed proof which preserves the Virtual Deduction proof's step numbers and their ordering. See suctr for the original proof. (Contributed by Alan Sare, 11-Apr-2009) (Revised by Alan Sare, 12-Jun-2018) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion suctrALT
|- ( Tr A -> Tr suc A )

Proof

Step Hyp Ref Expression
1 sssucid
 |-  A C_ suc A
2 id
 |-  ( Tr A -> Tr A )
3 id
 |-  ( ( z e. y /\ y e. suc A ) -> ( z e. y /\ y e. suc A ) )
4 3 simpld
 |-  ( ( z e. y /\ y e. suc A ) -> z e. y )
5 id
 |-  ( y e. A -> y e. A )
6 trel
 |-  ( Tr A -> ( ( z e. y /\ y e. A ) -> z e. A ) )
7 6 3impib
 |-  ( ( Tr A /\ z e. y /\ y e. A ) -> z e. A )
8 7 idiALT
 |-  ( ( Tr A /\ z e. y /\ y e. A ) -> z e. A )
9 2 4 5 8 syl3an
 |-  ( ( Tr A /\ ( z e. y /\ y e. suc A ) /\ y e. A ) -> z e. A )
10 1 9 sseldi
 |-  ( ( Tr A /\ ( z e. y /\ y e. suc A ) /\ y e. A ) -> z e. suc A )
11 10 3expia
 |-  ( ( Tr A /\ ( z e. y /\ y e. suc A ) ) -> ( y e. A -> z e. suc A ) )
12 4 adantr
 |-  ( ( ( z e. y /\ y e. suc A ) /\ y = A ) -> z e. y )
13 id
 |-  ( y = A -> y = A )
14 13 adantl
 |-  ( ( ( z e. y /\ y e. suc A ) /\ y = A ) -> y = A )
15 12 14 eleqtrd
 |-  ( ( ( z e. y /\ y e. suc A ) /\ y = A ) -> z e. A )
16 1 15 sseldi
 |-  ( ( ( z e. y /\ y e. suc A ) /\ y = A ) -> z e. suc A )
17 16 ex
 |-  ( ( z e. y /\ y e. suc A ) -> ( y = A -> z e. suc A ) )
18 17 adantl
 |-  ( ( Tr A /\ ( z e. y /\ y e. suc A ) ) -> ( y = A -> z e. suc A ) )
19 3 simprd
 |-  ( ( z e. y /\ y e. suc A ) -> y e. suc A )
20 elsuci
 |-  ( y e. suc A -> ( y e. A \/ y = A ) )
21 19 20 syl
 |-  ( ( z e. y /\ y e. suc A ) -> ( y e. A \/ y = A ) )
22 21 adantl
 |-  ( ( Tr A /\ ( z e. y /\ y e. suc A ) ) -> ( y e. A \/ y = A ) )
23 11 18 22 mpjaod
 |-  ( ( Tr A /\ ( z e. y /\ y e. suc A ) ) -> z e. suc A )
24 23 ex
 |-  ( Tr A -> ( ( z e. y /\ y e. suc A ) -> z e. suc A ) )
25 24 alrimivv
 |-  ( Tr A -> A. z A. y ( ( z e. y /\ y e. suc A ) -> z e. suc A ) )
26 dftr2
 |-  ( Tr suc A <-> A. z A. y ( ( z e. y /\ y e. suc A ) -> z e. suc A ) )
27 26 biimpri
 |-  ( A. z A. y ( ( z e. y /\ y e. suc A ) -> z e. suc A ) -> Tr suc A )
28 25 27 syl
 |-  ( Tr A -> Tr suc A )