Metamath Proof Explorer


Theorem suctrALT

Description: The successor of a transitive class is transitive. The proof of https://us.metamath.org/other/completeusersproof/suctrvd.html is a Virtual Deduction proof verified by automatically transforming it into the Metamath proof of suctrALT using completeusersproof, which is verified by the Metamath program. The proof of https://us.metamath.org/other/completeusersproof/suctrro.html is a form of the completed proof which preserves the Virtual Deduction proof's step numbers and their ordering. See suctr for the original proof. (Contributed by Alan Sare, 11-Apr-2009) (Revised by Alan Sare, 12-Jun-2018) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion suctrALT Tr A Tr suc A

Proof

Step Hyp Ref Expression
1 sssucid A suc A
2 id Tr A Tr A
3 id z y y suc A z y y suc A
4 3 simpld z y y suc A z y
5 id y A y A
6 trel Tr A z y y A z A
7 6 3impib Tr A z y y A z A
8 7 idiALT Tr A z y y A z A
9 2 4 5 8 syl3an Tr A z y y suc A y A z A
10 1 9 sselid Tr A z y y suc A y A z suc A
11 10 3expia Tr A z y y suc A y A z suc A
12 4 adantr z y y suc A y = A z y
13 id y = A y = A
14 13 adantl z y y suc A y = A y = A
15 12 14 eleqtrd z y y suc A y = A z A
16 1 15 sselid z y y suc A y = A z suc A
17 16 ex z y y suc A y = A z suc A
18 17 adantl Tr A z y y suc A y = A z suc A
19 3 simprd z y y suc A y suc A
20 elsuci y suc A y A y = A
21 19 20 syl z y y suc A y A y = A
22 21 adantl Tr A z y y suc A y A y = A
23 11 18 22 mpjaod Tr A z y y suc A z suc A
24 23 ex Tr A z y y suc A z suc A
25 24 alrimivv Tr A z y z y y suc A z suc A
26 dftr2 Tr suc A z y z y y suc A z suc A
27 26 biimpri z y z y y suc A z suc A Tr suc A
28 25 27 syl Tr A Tr suc A