Metamath Proof Explorer


Theorem pzriprng1

Description: The ring unity of the ring ( ZZring Xs. ZZring ) . Direct proof in contrast to pzriprng1ALT . (Contributed by AV, 25-Mar-2025)

Ref Expression
Assertion pzriprng1 1 ring × 𝑠 ring = 1 1

Proof

Step Hyp Ref Expression
1 zringring ring Ring
2 eqid ring × 𝑠 ring = ring × 𝑠 ring
3 id ring Ring ring Ring
4 2 3 3 xpsring1d ring Ring 1 ring × 𝑠 ring = 1 ring 1 ring
5 1 4 ax-mp 1 ring × 𝑠 ring = 1 ring 1 ring
6 zring1 1 = 1 ring
7 6 6 opeq12i 1 1 = 1 ring 1 ring
8 5 7 eqtr4i 1 ring × 𝑠 ring = 1 1