Metamath Proof Explorer


Theorem pzriprng1

Description: The ring unity of the ring ( ZZring Xs. ZZring ) . Direct proof in contrast to pzriprng1ALT . (Contributed by AV, 25-Mar-2025)

Ref Expression
Assertion pzriprng1 ( 1r ‘ ( ℤring ×sring ) ) = ⟨ 1 , 1 ⟩

Proof

Step Hyp Ref Expression
1 zringring ring ∈ Ring
2 eqid ( ℤring ×sring ) = ( ℤring ×sring )
3 id ( ℤring ∈ Ring → ℤring ∈ Ring )
4 2 3 3 xpsring1d ( ℤring ∈ Ring → ( 1r ‘ ( ℤring ×sring ) ) = ⟨ ( 1r ‘ ℤring ) , ( 1r ‘ ℤring ) ⟩ )
5 1 4 ax-mp ( 1r ‘ ( ℤring ×sring ) ) = ⟨ ( 1r ‘ ℤring ) , ( 1r ‘ ℤring ) ⟩
6 zring1 1 = ( 1r ‘ ℤring )
7 6 6 opeq12i ⟨ 1 , 1 ⟩ = ⟨ ( 1r ‘ ℤring ) , ( 1r ‘ ℤring ) ⟩
8 5 7 eqtr4i ( 1r ‘ ( ℤring ×sring ) ) = ⟨ 1 , 1 ⟩