Description: The ring unity of the ring ( ZZring Xs. ZZring ) . Direct proof in contrast to pzriprng1ALT . (Contributed by AV, 25-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pzriprng1 | ⊢ ( 1r ‘ ( ℤring ×s ℤring ) ) = 〈 1 , 1 〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zringring | ⊢ ℤring ∈ Ring | |
| 2 | eqid | ⊢ ( ℤring ×s ℤring ) = ( ℤring ×s ℤring ) | |
| 3 | id | ⊢ ( ℤring ∈ Ring → ℤring ∈ Ring ) | |
| 4 | 2 3 3 | xpsring1d | ⊢ ( ℤring ∈ Ring → ( 1r ‘ ( ℤring ×s ℤring ) ) = 〈 ( 1r ‘ ℤring ) , ( 1r ‘ ℤring ) 〉 ) |
| 5 | 1 4 | ax-mp | ⊢ ( 1r ‘ ( ℤring ×s ℤring ) ) = 〈 ( 1r ‘ ℤring ) , ( 1r ‘ ℤring ) 〉 |
| 6 | zring1 | ⊢ 1 = ( 1r ‘ ℤring ) | |
| 7 | 6 6 | opeq12i | ⊢ 〈 1 , 1 〉 = 〈 ( 1r ‘ ℤring ) , ( 1r ‘ ℤring ) 〉 |
| 8 | 5 7 | eqtr4i | ⊢ ( 1r ‘ ( ℤring ×s ℤring ) ) = 〈 1 , 1 〉 |