Description: The ring unity of the ring ( ZZring Xs. ZZring ) . Direct proof in contrast to pzriprng1ALT . (Contributed by AV, 25-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | pzriprng1 | ⊢ ( 1r ‘ ( ℤring ×s ℤring ) ) = 〈 1 , 1 〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zringring | ⊢ ℤring ∈ Ring | |
2 | eqid | ⊢ ( ℤring ×s ℤring ) = ( ℤring ×s ℤring ) | |
3 | id | ⊢ ( ℤring ∈ Ring → ℤring ∈ Ring ) | |
4 | 2 3 3 | xpsring1d | ⊢ ( ℤring ∈ Ring → ( 1r ‘ ( ℤring ×s ℤring ) ) = 〈 ( 1r ‘ ℤring ) , ( 1r ‘ ℤring ) 〉 ) |
5 | 1 4 | ax-mp | ⊢ ( 1r ‘ ( ℤring ×s ℤring ) ) = 〈 ( 1r ‘ ℤring ) , ( 1r ‘ ℤring ) 〉 |
6 | zring1 | ⊢ 1 = ( 1r ‘ ℤring ) | |
7 | 6 6 | opeq12i | ⊢ 〈 1 , 1 〉 = 〈 ( 1r ‘ ℤring ) , ( 1r ‘ ℤring ) 〉 |
8 | 5 7 | eqtr4i | ⊢ ( 1r ‘ ( ℤring ×s ℤring ) ) = 〈 1 , 1 〉 |