Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( ℤring ×s ℤring ) = ( ℤring ×s ℤring ) |
2 |
1
|
pzriprnglem1 |
⊢ ( ℤring ×s ℤring ) ∈ Rng |
3 |
|
eqid |
⊢ ( ℤ × { 0 } ) = ( ℤ × { 0 } ) |
4 |
|
eqid |
⊢ ( ( ℤring ×s ℤring ) ↾s ( ℤ × { 0 } ) ) = ( ( ℤring ×s ℤring ) ↾s ( ℤ × { 0 } ) ) |
5 |
1 3 4
|
pzriprnglem8 |
⊢ ( ℤ × { 0 } ) ∈ ( 2Ideal ‘ ( ℤring ×s ℤring ) ) |
6 |
2 5
|
pm3.2i |
⊢ ( ( ℤring ×s ℤring ) ∈ Rng ∧ ( ℤ × { 0 } ) ∈ ( 2Ideal ‘ ( ℤring ×s ℤring ) ) ) |
7 |
1 3 4
|
pzriprnglem7 |
⊢ ( ( ℤring ×s ℤring ) ↾s ( ℤ × { 0 } ) ) ∈ Ring |
8 |
|
eqid |
⊢ ( 1r ‘ ( ( ℤring ×s ℤring ) ↾s ( ℤ × { 0 } ) ) ) = ( 1r ‘ ( ( ℤring ×s ℤring ) ↾s ( ℤ × { 0 } ) ) ) |
9 |
|
eqid |
⊢ ( ( ℤring ×s ℤring ) ~QG ( ℤ × { 0 } ) ) = ( ( ℤring ×s ℤring ) ~QG ( ℤ × { 0 } ) ) |
10 |
|
eqid |
⊢ ( ( ℤring ×s ℤring ) /s ( ( ℤring ×s ℤring ) ~QG ( ℤ × { 0 } ) ) ) = ( ( ℤring ×s ℤring ) /s ( ( ℤring ×s ℤring ) ~QG ( ℤ × { 0 } ) ) ) |
11 |
1 3 4 8 9 10
|
pzriprnglem13 |
⊢ ( ( ℤring ×s ℤring ) /s ( ( ℤring ×s ℤring ) ~QG ( ℤ × { 0 } ) ) ) ∈ Ring |
12 |
7 11
|
pm3.2i |
⊢ ( ( ( ℤring ×s ℤring ) ↾s ( ℤ × { 0 } ) ) ∈ Ring ∧ ( ( ℤring ×s ℤring ) /s ( ( ℤring ×s ℤring ) ~QG ( ℤ × { 0 } ) ) ) ∈ Ring ) |
13 |
|
1z |
⊢ 1 ∈ ℤ |
14 |
|
1ex |
⊢ 1 ∈ V |
15 |
14
|
snid |
⊢ 1 ∈ { 1 } |
16 |
13 15
|
opelxpii |
⊢ 〈 1 , 1 〉 ∈ ( ℤ × { 1 } ) |
17 |
1 3 4 8 9 10
|
pzriprnglem14 |
⊢ ( 1r ‘ ( ( ℤring ×s ℤring ) /s ( ( ℤring ×s ℤring ) ~QG ( ℤ × { 0 } ) ) ) ) = ( ℤ × { 1 } ) |
18 |
16 17
|
eleqtrri |
⊢ 〈 1 , 1 〉 ∈ ( 1r ‘ ( ( ℤring ×s ℤring ) /s ( ( ℤring ×s ℤring ) ~QG ( ℤ × { 0 } ) ) ) ) |
19 |
|
eqid |
⊢ ( .r ‘ ( ℤring ×s ℤring ) ) = ( .r ‘ ( ℤring ×s ℤring ) ) |
20 |
|
eqid |
⊢ ( -g ‘ ( ℤring ×s ℤring ) ) = ( -g ‘ ( ℤring ×s ℤring ) ) |
21 |
|
eqid |
⊢ ( +g ‘ ( ℤring ×s ℤring ) ) = ( +g ‘ ( ℤring ×s ℤring ) ) |
22 |
19 8 20 21
|
ring2idlqus1 |
⊢ ( ( ( ( ℤring ×s ℤring ) ∈ Rng ∧ ( ℤ × { 0 } ) ∈ ( 2Ideal ‘ ( ℤring ×s ℤring ) ) ) ∧ ( ( ( ℤring ×s ℤring ) ↾s ( ℤ × { 0 } ) ) ∈ Ring ∧ ( ( ℤring ×s ℤring ) /s ( ( ℤring ×s ℤring ) ~QG ( ℤ × { 0 } ) ) ) ∈ Ring ) ∧ 〈 1 , 1 〉 ∈ ( 1r ‘ ( ( ℤring ×s ℤring ) /s ( ( ℤring ×s ℤring ) ~QG ( ℤ × { 0 } ) ) ) ) ) → ( ( ℤring ×s ℤring ) ∈ Ring ∧ ( 1r ‘ ( ℤring ×s ℤring ) ) = ( ( 〈 1 , 1 〉 ( -g ‘ ( ℤring ×s ℤring ) ) ( ( 1r ‘ ( ( ℤring ×s ℤring ) ↾s ( ℤ × { 0 } ) ) ) ( .r ‘ ( ℤring ×s ℤring ) ) 〈 1 , 1 〉 ) ) ( +g ‘ ( ℤring ×s ℤring ) ) ( 1r ‘ ( ( ℤring ×s ℤring ) ↾s ( ℤ × { 0 } ) ) ) ) ) ) |
23 |
22
|
simprd |
⊢ ( ( ( ( ℤring ×s ℤring ) ∈ Rng ∧ ( ℤ × { 0 } ) ∈ ( 2Ideal ‘ ( ℤring ×s ℤring ) ) ) ∧ ( ( ( ℤring ×s ℤring ) ↾s ( ℤ × { 0 } ) ) ∈ Ring ∧ ( ( ℤring ×s ℤring ) /s ( ( ℤring ×s ℤring ) ~QG ( ℤ × { 0 } ) ) ) ∈ Ring ) ∧ 〈 1 , 1 〉 ∈ ( 1r ‘ ( ( ℤring ×s ℤring ) /s ( ( ℤring ×s ℤring ) ~QG ( ℤ × { 0 } ) ) ) ) ) → ( 1r ‘ ( ℤring ×s ℤring ) ) = ( ( 〈 1 , 1 〉 ( -g ‘ ( ℤring ×s ℤring ) ) ( ( 1r ‘ ( ( ℤring ×s ℤring ) ↾s ( ℤ × { 0 } ) ) ) ( .r ‘ ( ℤring ×s ℤring ) ) 〈 1 , 1 〉 ) ) ( +g ‘ ( ℤring ×s ℤring ) ) ( 1r ‘ ( ( ℤring ×s ℤring ) ↾s ( ℤ × { 0 } ) ) ) ) ) |
24 |
6 12 18 23
|
mp3an |
⊢ ( 1r ‘ ( ℤring ×s ℤring ) ) = ( ( 〈 1 , 1 〉 ( -g ‘ ( ℤring ×s ℤring ) ) ( ( 1r ‘ ( ( ℤring ×s ℤring ) ↾s ( ℤ × { 0 } ) ) ) ( .r ‘ ( ℤring ×s ℤring ) ) 〈 1 , 1 〉 ) ) ( +g ‘ ( ℤring ×s ℤring ) ) ( 1r ‘ ( ( ℤring ×s ℤring ) ↾s ( ℤ × { 0 } ) ) ) ) |
25 |
1 3 4 8
|
pzriprnglem9 |
⊢ ( 1r ‘ ( ( ℤring ×s ℤring ) ↾s ( ℤ × { 0 } ) ) ) = 〈 1 , 0 〉 |
26 |
25
|
oveq1i |
⊢ ( ( 1r ‘ ( ( ℤring ×s ℤring ) ↾s ( ℤ × { 0 } ) ) ) ( .r ‘ ( ℤring ×s ℤring ) ) 〈 1 , 1 〉 ) = ( 〈 1 , 0 〉 ( .r ‘ ( ℤring ×s ℤring ) ) 〈 1 , 1 〉 ) |
27 |
26
|
oveq2i |
⊢ ( 〈 1 , 1 〉 ( -g ‘ ( ℤring ×s ℤring ) ) ( ( 1r ‘ ( ( ℤring ×s ℤring ) ↾s ( ℤ × { 0 } ) ) ) ( .r ‘ ( ℤring ×s ℤring ) ) 〈 1 , 1 〉 ) ) = ( 〈 1 , 1 〉 ( -g ‘ ( ℤring ×s ℤring ) ) ( 〈 1 , 0 〉 ( .r ‘ ( ℤring ×s ℤring ) ) 〈 1 , 1 〉 ) ) |
28 |
27 25
|
oveq12i |
⊢ ( ( 〈 1 , 1 〉 ( -g ‘ ( ℤring ×s ℤring ) ) ( ( 1r ‘ ( ( ℤring ×s ℤring ) ↾s ( ℤ × { 0 } ) ) ) ( .r ‘ ( ℤring ×s ℤring ) ) 〈 1 , 1 〉 ) ) ( +g ‘ ( ℤring ×s ℤring ) ) ( 1r ‘ ( ( ℤring ×s ℤring ) ↾s ( ℤ × { 0 } ) ) ) ) = ( ( 〈 1 , 1 〉 ( -g ‘ ( ℤring ×s ℤring ) ) ( 〈 1 , 0 〉 ( .r ‘ ( ℤring ×s ℤring ) ) 〈 1 , 1 〉 ) ) ( +g ‘ ( ℤring ×s ℤring ) ) 〈 1 , 0 〉 ) |
29 |
|
zringring |
⊢ ℤring ∈ Ring |
30 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
31 |
|
id |
⊢ ( ℤring ∈ Ring → ℤring ∈ Ring ) |
32 |
13
|
a1i |
⊢ ( ℤring ∈ Ring → 1 ∈ ℤ ) |
33 |
|
0zd |
⊢ ( ℤring ∈ Ring → 0 ∈ ℤ ) |
34 |
|
zmulcl |
⊢ ( ( 1 ∈ ℤ ∧ 1 ∈ ℤ ) → ( 1 · 1 ) ∈ ℤ ) |
35 |
13 13 34
|
mp2an |
⊢ ( 1 · 1 ) ∈ ℤ |
36 |
35
|
a1i |
⊢ ( ℤring ∈ Ring → ( 1 · 1 ) ∈ ℤ ) |
37 |
|
zringmulr |
⊢ · = ( .r ‘ ℤring ) |
38 |
37
|
eqcomi |
⊢ ( .r ‘ ℤring ) = · |
39 |
38
|
oveqi |
⊢ ( 0 ( .r ‘ ℤring ) 1 ) = ( 0 · 1 ) |
40 |
|
0z |
⊢ 0 ∈ ℤ |
41 |
|
zmulcl |
⊢ ( ( 0 ∈ ℤ ∧ 1 ∈ ℤ ) → ( 0 · 1 ) ∈ ℤ ) |
42 |
40 13 41
|
mp2an |
⊢ ( 0 · 1 ) ∈ ℤ |
43 |
39 42
|
eqeltri |
⊢ ( 0 ( .r ‘ ℤring ) 1 ) ∈ ℤ |
44 |
43
|
a1i |
⊢ ( ℤring ∈ Ring → ( 0 ( .r ‘ ℤring ) 1 ) ∈ ℤ ) |
45 |
|
eqid |
⊢ ( .r ‘ ℤring ) = ( .r ‘ ℤring ) |
46 |
1 30 30 31 31 32 33 32 32 36 44 37 45 19
|
xpsmul |
⊢ ( ℤring ∈ Ring → ( 〈 1 , 0 〉 ( .r ‘ ( ℤring ×s ℤring ) ) 〈 1 , 1 〉 ) = 〈 ( 1 · 1 ) , ( 0 ( .r ‘ ℤring ) 1 ) 〉 ) |
47 |
29 46
|
ax-mp |
⊢ ( 〈 1 , 0 〉 ( .r ‘ ( ℤring ×s ℤring ) ) 〈 1 , 1 〉 ) = 〈 ( 1 · 1 ) , ( 0 ( .r ‘ ℤring ) 1 ) 〉 |
48 |
47
|
oveq2i |
⊢ ( 〈 1 , 1 〉 ( -g ‘ ( ℤring ×s ℤring ) ) ( 〈 1 , 0 〉 ( .r ‘ ( ℤring ×s ℤring ) ) 〈 1 , 1 〉 ) ) = ( 〈 1 , 1 〉 ( -g ‘ ( ℤring ×s ℤring ) ) 〈 ( 1 · 1 ) , ( 0 ( .r ‘ ℤring ) 1 ) 〉 ) |
49 |
|
1t1e1 |
⊢ ( 1 · 1 ) = 1 |
50 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
51 |
50
|
mul02i |
⊢ ( 0 · 1 ) = 0 |
52 |
39 51
|
eqtri |
⊢ ( 0 ( .r ‘ ℤring ) 1 ) = 0 |
53 |
49 52
|
opeq12i |
⊢ 〈 ( 1 · 1 ) , ( 0 ( .r ‘ ℤring ) 1 ) 〉 = 〈 1 , 0 〉 |
54 |
53
|
oveq2i |
⊢ ( 〈 1 , 1 〉 ( -g ‘ ( ℤring ×s ℤring ) ) 〈 ( 1 · 1 ) , ( 0 ( .r ‘ ℤring ) 1 ) 〉 ) = ( 〈 1 , 1 〉 ( -g ‘ ( ℤring ×s ℤring ) ) 〈 1 , 0 〉 ) |
55 |
|
zringgrp |
⊢ ℤring ∈ Grp |
56 |
55
|
a1i |
⊢ ( 1 ∈ ℤ → ℤring ∈ Grp ) |
57 |
|
id |
⊢ ( 1 ∈ ℤ → 1 ∈ ℤ ) |
58 |
|
0zd |
⊢ ( 1 ∈ ℤ → 0 ∈ ℤ ) |
59 |
|
eqid |
⊢ ( -g ‘ ℤring ) = ( -g ‘ ℤring ) |
60 |
1 30 30 56 56 57 57 57 58 59 59 20
|
xpsgrpsub |
⊢ ( 1 ∈ ℤ → ( 〈 1 , 1 〉 ( -g ‘ ( ℤring ×s ℤring ) ) 〈 1 , 0 〉 ) = 〈 ( 1 ( -g ‘ ℤring ) 1 ) , ( 1 ( -g ‘ ℤring ) 0 ) 〉 ) |
61 |
13 60
|
ax-mp |
⊢ ( 〈 1 , 1 〉 ( -g ‘ ( ℤring ×s ℤring ) ) 〈 1 , 0 〉 ) = 〈 ( 1 ( -g ‘ ℤring ) 1 ) , ( 1 ( -g ‘ ℤring ) 0 ) 〉 |
62 |
48 54 61
|
3eqtri |
⊢ ( 〈 1 , 1 〉 ( -g ‘ ( ℤring ×s ℤring ) ) ( 〈 1 , 0 〉 ( .r ‘ ( ℤring ×s ℤring ) ) 〈 1 , 1 〉 ) ) = 〈 ( 1 ( -g ‘ ℤring ) 1 ) , ( 1 ( -g ‘ ℤring ) 0 ) 〉 |
63 |
62
|
oveq1i |
⊢ ( ( 〈 1 , 1 〉 ( -g ‘ ( ℤring ×s ℤring ) ) ( 〈 1 , 0 〉 ( .r ‘ ( ℤring ×s ℤring ) ) 〈 1 , 1 〉 ) ) ( +g ‘ ( ℤring ×s ℤring ) ) 〈 1 , 0 〉 ) = ( 〈 ( 1 ( -g ‘ ℤring ) 1 ) , ( 1 ( -g ‘ ℤring ) 0 ) 〉 ( +g ‘ ( ℤring ×s ℤring ) ) 〈 1 , 0 〉 ) |
64 |
59
|
zringsub |
⊢ ( ( 1 ∈ ℤ ∧ 1 ∈ ℤ ) → ( 1 ( -g ‘ ℤring ) 1 ) = ( 1 − 1 ) ) |
65 |
13 13 64
|
mp2an |
⊢ ( 1 ( -g ‘ ℤring ) 1 ) = ( 1 − 1 ) |
66 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
67 |
65 66
|
eqtri |
⊢ ( 1 ( -g ‘ ℤring ) 1 ) = 0 |
68 |
59
|
zringsub |
⊢ ( ( 1 ∈ ℤ ∧ 0 ∈ ℤ ) → ( 1 ( -g ‘ ℤring ) 0 ) = ( 1 − 0 ) ) |
69 |
13 40 68
|
mp2an |
⊢ ( 1 ( -g ‘ ℤring ) 0 ) = ( 1 − 0 ) |
70 |
67 69
|
opeq12i |
⊢ 〈 ( 1 ( -g ‘ ℤring ) 1 ) , ( 1 ( -g ‘ ℤring ) 0 ) 〉 = 〈 0 , ( 1 − 0 ) 〉 |
71 |
70
|
oveq1i |
⊢ ( 〈 ( 1 ( -g ‘ ℤring ) 1 ) , ( 1 ( -g ‘ ℤring ) 0 ) 〉 ( +g ‘ ( ℤring ×s ℤring ) ) 〈 1 , 0 〉 ) = ( 〈 0 , ( 1 − 0 ) 〉 ( +g ‘ ( ℤring ×s ℤring ) ) 〈 1 , 0 〉 ) |
72 |
|
1m0e1 |
⊢ ( 1 − 0 ) = 1 |
73 |
72
|
opeq2i |
⊢ 〈 0 , ( 1 − 0 ) 〉 = 〈 0 , 1 〉 |
74 |
73
|
oveq1i |
⊢ ( 〈 0 , ( 1 − 0 ) 〉 ( +g ‘ ( ℤring ×s ℤring ) ) 〈 1 , 0 〉 ) = ( 〈 0 , 1 〉 ( +g ‘ ( ℤring ×s ℤring ) ) 〈 1 , 0 〉 ) |
75 |
29
|
a1i |
⊢ ( 1 ∈ ℤ → ℤring ∈ Ring ) |
76 |
58 57
|
zaddcld |
⊢ ( 1 ∈ ℤ → ( 0 + 1 ) ∈ ℤ ) |
77 |
57 58
|
zaddcld |
⊢ ( 1 ∈ ℤ → ( 1 + 0 ) ∈ ℤ ) |
78 |
|
zringplusg |
⊢ + = ( +g ‘ ℤring ) |
79 |
1 30 30 75 75 58 57 57 58 76 77 78 78 21
|
xpsadd |
⊢ ( 1 ∈ ℤ → ( 〈 0 , 1 〉 ( +g ‘ ( ℤring ×s ℤring ) ) 〈 1 , 0 〉 ) = 〈 ( 0 + 1 ) , ( 1 + 0 ) 〉 ) |
80 |
13 79
|
ax-mp |
⊢ ( 〈 0 , 1 〉 ( +g ‘ ( ℤring ×s ℤring ) ) 〈 1 , 0 〉 ) = 〈 ( 0 + 1 ) , ( 1 + 0 ) 〉 |
81 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
82 |
|
1p0e1 |
⊢ ( 1 + 0 ) = 1 |
83 |
81 82
|
opeq12i |
⊢ 〈 ( 0 + 1 ) , ( 1 + 0 ) 〉 = 〈 1 , 1 〉 |
84 |
74 80 83
|
3eqtri |
⊢ ( 〈 0 , ( 1 − 0 ) 〉 ( +g ‘ ( ℤring ×s ℤring ) ) 〈 1 , 0 〉 ) = 〈 1 , 1 〉 |
85 |
63 71 84
|
3eqtri |
⊢ ( ( 〈 1 , 1 〉 ( -g ‘ ( ℤring ×s ℤring ) ) ( 〈 1 , 0 〉 ( .r ‘ ( ℤring ×s ℤring ) ) 〈 1 , 1 〉 ) ) ( +g ‘ ( ℤring ×s ℤring ) ) 〈 1 , 0 〉 ) = 〈 1 , 1 〉 |
86 |
24 28 85
|
3eqtri |
⊢ ( 1r ‘ ( ℤring ×s ℤring ) ) = 〈 1 , 1 〉 |