Step |
Hyp |
Ref |
Expression |
1 |
|
pzriprng.r |
⊢ 𝑅 = ( ℤring ×s ℤring ) |
2 |
|
pzriprng.i |
⊢ 𝐼 = ( ℤ × { 0 } ) |
3 |
|
pzriprng.j |
⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) |
4 |
|
pzriprng.1 |
⊢ 1 = ( 1r ‘ 𝐽 ) |
5 |
|
pzriprng.g |
⊢ ∼ = ( 𝑅 ~QG 𝐼 ) |
6 |
|
pzriprng.q |
⊢ 𝑄 = ( 𝑅 /s ∼ ) |
7 |
|
1z |
⊢ 1 ∈ ℤ |
8 |
|
sneq |
⊢ ( 𝑦 = 1 → { 𝑦 } = { 1 } ) |
9 |
8
|
xpeq2d |
⊢ ( 𝑦 = 1 → ( ℤ × { 𝑦 } ) = ( ℤ × { 1 } ) ) |
10 |
9
|
sneqd |
⊢ ( 𝑦 = 1 → { ( ℤ × { 𝑦 } ) } = { ( ℤ × { 1 } ) } ) |
11 |
10
|
eleq2d |
⊢ ( 𝑦 = 1 → ( ( ℤ × { 1 } ) ∈ { ( ℤ × { 𝑦 } ) } ↔ ( ℤ × { 1 } ) ∈ { ( ℤ × { 1 } ) } ) ) |
12 |
|
id |
⊢ ( 1 ∈ ℤ → 1 ∈ ℤ ) |
13 |
|
zex |
⊢ ℤ ∈ V |
14 |
|
snex |
⊢ { 1 } ∈ V |
15 |
13 14
|
xpex |
⊢ ( ℤ × { 1 } ) ∈ V |
16 |
15
|
snid |
⊢ ( ℤ × { 1 } ) ∈ { ( ℤ × { 1 } ) } |
17 |
16
|
a1i |
⊢ ( 1 ∈ ℤ → ( ℤ × { 1 } ) ∈ { ( ℤ × { 1 } ) } ) |
18 |
11 12 17
|
rspcedvdw |
⊢ ( 1 ∈ ℤ → ∃ 𝑦 ∈ ℤ ( ℤ × { 1 } ) ∈ { ( ℤ × { 𝑦 } ) } ) |
19 |
7 18
|
ax-mp |
⊢ ∃ 𝑦 ∈ ℤ ( ℤ × { 1 } ) ∈ { ( ℤ × { 𝑦 } ) } |
20 |
1 2 3 4 5 6
|
pzriprnglem11 |
⊢ ( Base ‘ 𝑄 ) = ∪ 𝑦 ∈ ℤ { ( ℤ × { 𝑦 } ) } |
21 |
20
|
eleq2i |
⊢ ( ( ℤ × { 1 } ) ∈ ( Base ‘ 𝑄 ) ↔ ( ℤ × { 1 } ) ∈ ∪ 𝑦 ∈ ℤ { ( ℤ × { 𝑦 } ) } ) |
22 |
|
eliun |
⊢ ( ( ℤ × { 1 } ) ∈ ∪ 𝑦 ∈ ℤ { ( ℤ × { 𝑦 } ) } ↔ ∃ 𝑦 ∈ ℤ ( ℤ × { 1 } ) ∈ { ( ℤ × { 𝑦 } ) } ) |
23 |
21 22
|
bitri |
⊢ ( ( ℤ × { 1 } ) ∈ ( Base ‘ 𝑄 ) ↔ ∃ 𝑦 ∈ ℤ ( ℤ × { 1 } ) ∈ { ( ℤ × { 𝑦 } ) } ) |
24 |
19 23
|
mpbir |
⊢ ( ℤ × { 1 } ) ∈ ( Base ‘ 𝑄 ) |
25 |
1 2 3 4 5 6
|
pzriprnglem12 |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑄 ) → ( ( ( ℤ × { 1 } ) ( .r ‘ 𝑄 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑄 ) ( ℤ × { 1 } ) ) = 𝑥 ) ) |
26 |
25
|
rgen |
⊢ ∀ 𝑥 ∈ ( Base ‘ 𝑄 ) ( ( ( ℤ × { 1 } ) ( .r ‘ 𝑄 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑄 ) ( ℤ × { 1 } ) ) = 𝑥 ) |
27 |
24 26
|
pm3.2i |
⊢ ( ( ℤ × { 1 } ) ∈ ( Base ‘ 𝑄 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑄 ) ( ( ( ℤ × { 1 } ) ( .r ‘ 𝑄 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑄 ) ( ℤ × { 1 } ) ) = 𝑥 ) ) |
28 |
1 2 3 4 5 6
|
pzriprnglem13 |
⊢ 𝑄 ∈ Ring |
29 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
30 |
|
eqid |
⊢ ( .r ‘ 𝑄 ) = ( .r ‘ 𝑄 ) |
31 |
|
eqid |
⊢ ( 1r ‘ 𝑄 ) = ( 1r ‘ 𝑄 ) |
32 |
29 30 31
|
isringid |
⊢ ( 𝑄 ∈ Ring → ( ( ( ℤ × { 1 } ) ∈ ( Base ‘ 𝑄 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑄 ) ( ( ( ℤ × { 1 } ) ( .r ‘ 𝑄 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑄 ) ( ℤ × { 1 } ) ) = 𝑥 ) ) ↔ ( 1r ‘ 𝑄 ) = ( ℤ × { 1 } ) ) ) |
33 |
28 32
|
ax-mp |
⊢ ( ( ( ℤ × { 1 } ) ∈ ( Base ‘ 𝑄 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑄 ) ( ( ( ℤ × { 1 } ) ( .r ‘ 𝑄 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑄 ) ( ℤ × { 1 } ) ) = 𝑥 ) ) ↔ ( 1r ‘ 𝑄 ) = ( ℤ × { 1 } ) ) |
34 |
27 33
|
mpbi |
⊢ ( 1r ‘ 𝑄 ) = ( ℤ × { 1 } ) |