Metamath Proof Explorer


Theorem pzriprnglem14

Description: Lemma 14 for pzriprng : The ring unity of the ring Q . (Contributed by AV, 23-Mar-2025)

Ref Expression
Hypotheses pzriprng.r 𝑅 = ( ℤring ×sring )
pzriprng.i 𝐼 = ( ℤ × { 0 } )
pzriprng.j 𝐽 = ( 𝑅s 𝐼 )
pzriprng.1 1 = ( 1r𝐽 )
pzriprng.g = ( 𝑅 ~QG 𝐼 )
pzriprng.q 𝑄 = ( 𝑅 /s )
Assertion pzriprnglem14 ( 1r𝑄 ) = ( ℤ × { 1 } )

Proof

Step Hyp Ref Expression
1 pzriprng.r 𝑅 = ( ℤring ×sring )
2 pzriprng.i 𝐼 = ( ℤ × { 0 } )
3 pzriprng.j 𝐽 = ( 𝑅s 𝐼 )
4 pzriprng.1 1 = ( 1r𝐽 )
5 pzriprng.g = ( 𝑅 ~QG 𝐼 )
6 pzriprng.q 𝑄 = ( 𝑅 /s )
7 1z 1 ∈ ℤ
8 sneq ( 𝑦 = 1 → { 𝑦 } = { 1 } )
9 8 xpeq2d ( 𝑦 = 1 → ( ℤ × { 𝑦 } ) = ( ℤ × { 1 } ) )
10 9 sneqd ( 𝑦 = 1 → { ( ℤ × { 𝑦 } ) } = { ( ℤ × { 1 } ) } )
11 10 eleq2d ( 𝑦 = 1 → ( ( ℤ × { 1 } ) ∈ { ( ℤ × { 𝑦 } ) } ↔ ( ℤ × { 1 } ) ∈ { ( ℤ × { 1 } ) } ) )
12 id ( 1 ∈ ℤ → 1 ∈ ℤ )
13 zex ℤ ∈ V
14 snex { 1 } ∈ V
15 13 14 xpex ( ℤ × { 1 } ) ∈ V
16 15 snid ( ℤ × { 1 } ) ∈ { ( ℤ × { 1 } ) }
17 16 a1i ( 1 ∈ ℤ → ( ℤ × { 1 } ) ∈ { ( ℤ × { 1 } ) } )
18 11 12 17 rspcedvdw ( 1 ∈ ℤ → ∃ 𝑦 ∈ ℤ ( ℤ × { 1 } ) ∈ { ( ℤ × { 𝑦 } ) } )
19 7 18 ax-mp 𝑦 ∈ ℤ ( ℤ × { 1 } ) ∈ { ( ℤ × { 𝑦 } ) }
20 1 2 3 4 5 6 pzriprnglem11 ( Base ‘ 𝑄 ) = 𝑦 ∈ ℤ { ( ℤ × { 𝑦 } ) }
21 20 eleq2i ( ( ℤ × { 1 } ) ∈ ( Base ‘ 𝑄 ) ↔ ( ℤ × { 1 } ) ∈ 𝑦 ∈ ℤ { ( ℤ × { 𝑦 } ) } )
22 eliun ( ( ℤ × { 1 } ) ∈ 𝑦 ∈ ℤ { ( ℤ × { 𝑦 } ) } ↔ ∃ 𝑦 ∈ ℤ ( ℤ × { 1 } ) ∈ { ( ℤ × { 𝑦 } ) } )
23 21 22 bitri ( ( ℤ × { 1 } ) ∈ ( Base ‘ 𝑄 ) ↔ ∃ 𝑦 ∈ ℤ ( ℤ × { 1 } ) ∈ { ( ℤ × { 𝑦 } ) } )
24 19 23 mpbir ( ℤ × { 1 } ) ∈ ( Base ‘ 𝑄 )
25 1 2 3 4 5 6 pzriprnglem12 ( 𝑥 ∈ ( Base ‘ 𝑄 ) → ( ( ( ℤ × { 1 } ) ( .r𝑄 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r𝑄 ) ( ℤ × { 1 } ) ) = 𝑥 ) )
26 25 rgen 𝑥 ∈ ( Base ‘ 𝑄 ) ( ( ( ℤ × { 1 } ) ( .r𝑄 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r𝑄 ) ( ℤ × { 1 } ) ) = 𝑥 )
27 24 26 pm3.2i ( ( ℤ × { 1 } ) ∈ ( Base ‘ 𝑄 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑄 ) ( ( ( ℤ × { 1 } ) ( .r𝑄 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r𝑄 ) ( ℤ × { 1 } ) ) = 𝑥 ) )
28 1 2 3 4 5 6 pzriprnglem13 𝑄 ∈ Ring
29 eqid ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 )
30 eqid ( .r𝑄 ) = ( .r𝑄 )
31 eqid ( 1r𝑄 ) = ( 1r𝑄 )
32 29 30 31 isringid ( 𝑄 ∈ Ring → ( ( ( ℤ × { 1 } ) ∈ ( Base ‘ 𝑄 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑄 ) ( ( ( ℤ × { 1 } ) ( .r𝑄 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r𝑄 ) ( ℤ × { 1 } ) ) = 𝑥 ) ) ↔ ( 1r𝑄 ) = ( ℤ × { 1 } ) ) )
33 28 32 ax-mp ( ( ( ℤ × { 1 } ) ∈ ( Base ‘ 𝑄 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑄 ) ( ( ( ℤ × { 1 } ) ( .r𝑄 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r𝑄 ) ( ℤ × { 1 } ) ) = 𝑥 ) ) ↔ ( 1r𝑄 ) = ( ℤ × { 1 } ) )
34 27 33 mpbi ( 1r𝑄 ) = ( ℤ × { 1 } )