Metamath Proof Explorer


Theorem pzriprnglem11

Description: Lemma 11 for pzriprng : The base set of the quotient of R and J . (Contributed by AV, 22-Mar-2025)

Ref Expression
Hypotheses pzriprng.r 𝑅 = ( ℤring ×sring )
pzriprng.i 𝐼 = ( ℤ × { 0 } )
pzriprng.j 𝐽 = ( 𝑅s 𝐼 )
pzriprng.1 1 = ( 1r𝐽 )
pzriprng.g = ( 𝑅 ~QG 𝐼 )
pzriprng.q 𝑄 = ( 𝑅 /s )
Assertion pzriprnglem11 ( Base ‘ 𝑄 ) = 𝑟 ∈ ℤ { ( ℤ × { 𝑟 } ) }

Proof

Step Hyp Ref Expression
1 pzriprng.r 𝑅 = ( ℤring ×sring )
2 pzriprng.i 𝐼 = ( ℤ × { 0 } )
3 pzriprng.j 𝐽 = ( 𝑅s 𝐼 )
4 pzriprng.1 1 = ( 1r𝐽 )
5 pzriprng.g = ( 𝑅 ~QG 𝐼 )
6 pzriprng.q 𝑄 = ( 𝑅 /s )
7 df-qs ( ( ℤ × ℤ ) / ) = { 𝑒 ∣ ∃ 𝑝 ∈ ( ℤ × ℤ ) 𝑒 = [ 𝑝 ] }
8 6 a1i ( = ( 𝑅 ~QG 𝐼 ) → 𝑄 = ( 𝑅 /s ) )
9 1 pzriprnglem2 ( Base ‘ 𝑅 ) = ( ℤ × ℤ )
10 9 eqcomi ( ℤ × ℤ ) = ( Base ‘ 𝑅 )
11 10 a1i ( = ( 𝑅 ~QG 𝐼 ) → ( ℤ × ℤ ) = ( Base ‘ 𝑅 ) )
12 ovexd ( = ( 𝑅 ~QG 𝐼 ) → ( 𝑅 ~QG 𝐼 ) ∈ V )
13 5 12 eqeltrid ( = ( 𝑅 ~QG 𝐼 ) → ∈ V )
14 1 pzriprnglem1 𝑅 ∈ Rng
15 14 a1i ( = ( 𝑅 ~QG 𝐼 ) → 𝑅 ∈ Rng )
16 8 11 13 15 qusbas ( = ( 𝑅 ~QG 𝐼 ) → ( ( ℤ × ℤ ) / ) = ( Base ‘ 𝑄 ) )
17 5 16 ax-mp ( ( ℤ × ℤ ) / ) = ( Base ‘ 𝑄 )
18 nfcv 𝑠 { 𝑒𝑒 = [ 𝑝 ] }
19 nfcv 𝑟 { 𝑒𝑒 = [ 𝑝 ] }
20 nfcv 𝑝 { 𝑒𝑒 = [ ⟨ 𝑠 , 𝑟 ⟩ ] }
21 eceq1 ( 𝑝 = ⟨ 𝑠 , 𝑟 ⟩ → [ 𝑝 ] = [ ⟨ 𝑠 , 𝑟 ⟩ ] )
22 21 eqeq2d ( 𝑝 = ⟨ 𝑠 , 𝑟 ⟩ → ( 𝑒 = [ 𝑝 ] 𝑒 = [ ⟨ 𝑠 , 𝑟 ⟩ ] ) )
23 22 abbidv ( 𝑝 = ⟨ 𝑠 , 𝑟 ⟩ → { 𝑒𝑒 = [ 𝑝 ] } = { 𝑒𝑒 = [ ⟨ 𝑠 , 𝑟 ⟩ ] } )
24 18 19 20 23 iunxpf 𝑝 ∈ ( ℤ × ℤ ) { 𝑒𝑒 = [ 𝑝 ] } = 𝑠 ∈ ℤ 𝑟 ∈ ℤ { 𝑒𝑒 = [ ⟨ 𝑠 , 𝑟 ⟩ ] }
25 iunab 𝑝 ∈ ( ℤ × ℤ ) { 𝑒𝑒 = [ 𝑝 ] } = { 𝑒 ∣ ∃ 𝑝 ∈ ( ℤ × ℤ ) 𝑒 = [ 𝑝 ] }
26 iuncom 𝑠 ∈ ℤ 𝑟 ∈ ℤ { 𝑒𝑒 = [ ⟨ 𝑠 , 𝑟 ⟩ ] } = 𝑟 ∈ ℤ 𝑠 ∈ ℤ { 𝑒𝑒 = [ ⟨ 𝑠 , 𝑟 ⟩ ] }
27 df-sn { [ ⟨ 𝑠 , 𝑟 ⟩ ] } = { 𝑒𝑒 = [ ⟨ 𝑠 , 𝑟 ⟩ ] }
28 27 eqcomi { 𝑒𝑒 = [ ⟨ 𝑠 , 𝑟 ⟩ ] } = { [ ⟨ 𝑠 , 𝑟 ⟩ ] }
29 28 a1i ( 𝑠 ∈ ℤ → { 𝑒𝑒 = [ ⟨ 𝑠 , 𝑟 ⟩ ] } = { [ ⟨ 𝑠 , 𝑟 ⟩ ] } )
30 29 iuneq2i 𝑠 ∈ ℤ { 𝑒𝑒 = [ ⟨ 𝑠 , 𝑟 ⟩ ] } = 𝑠 ∈ ℤ { [ ⟨ 𝑠 , 𝑟 ⟩ ] }
31 simpr ( ( ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ∧ 𝑝 = [ ⟨ 𝑠 , 𝑟 ⟩ ] ) → 𝑝 = [ ⟨ 𝑠 , 𝑟 ⟩ ] )
32 1 2 3 4 5 pzriprnglem10 ( ( 𝑠 ∈ ℤ ∧ 𝑟 ∈ ℤ ) → [ ⟨ 𝑠 , 𝑟 ⟩ ] = ( ℤ × { 𝑟 } ) )
33 32 ancoms ( ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) → [ ⟨ 𝑠 , 𝑟 ⟩ ] = ( ℤ × { 𝑟 } ) )
34 33 adantr ( ( ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ∧ 𝑝 = [ ⟨ 𝑠 , 𝑟 ⟩ ] ) → [ ⟨ 𝑠 , 𝑟 ⟩ ] = ( ℤ × { 𝑟 } ) )
35 31 34 eqtrd ( ( ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ∧ 𝑝 = [ ⟨ 𝑠 , 𝑟 ⟩ ] ) → 𝑝 = ( ℤ × { 𝑟 } ) )
36 35 ex ( ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) → ( 𝑝 = [ ⟨ 𝑠 , 𝑟 ⟩ ] 𝑝 = ( ℤ × { 𝑟 } ) ) )
37 36 rexlimdva ( 𝑟 ∈ ℤ → ( ∃ 𝑠 ∈ ℤ 𝑝 = [ ⟨ 𝑠 , 𝑟 ⟩ ] 𝑝 = ( ℤ × { 𝑟 } ) ) )
38 0zd ( ( 𝑟 ∈ ℤ ∧ 𝑝 = ( ℤ × { 𝑟 } ) ) → 0 ∈ ℤ )
39 simpr ( ( 𝑟 ∈ ℤ ∧ 𝑝 = ( ℤ × { 𝑟 } ) ) → 𝑝 = ( ℤ × { 𝑟 } ) )
40 opeq1 ( 𝑠 = 0 → ⟨ 𝑠 , 𝑟 ⟩ = ⟨ 0 , 𝑟 ⟩ )
41 40 eceq1d ( 𝑠 = 0 → [ ⟨ 𝑠 , 𝑟 ⟩ ] = [ ⟨ 0 , 𝑟 ⟩ ] )
42 39 41 eqeqan12d ( ( ( 𝑟 ∈ ℤ ∧ 𝑝 = ( ℤ × { 𝑟 } ) ) ∧ 𝑠 = 0 ) → ( 𝑝 = [ ⟨ 𝑠 , 𝑟 ⟩ ] ↔ ( ℤ × { 𝑟 } ) = [ ⟨ 0 , 𝑟 ⟩ ] ) )
43 0zd ( 𝑟 ∈ ℤ → 0 ∈ ℤ )
44 1 2 3 4 5 pzriprnglem10 ( ( 0 ∈ ℤ ∧ 𝑟 ∈ ℤ ) → [ ⟨ 0 , 𝑟 ⟩ ] = ( ℤ × { 𝑟 } ) )
45 43 44 mpancom ( 𝑟 ∈ ℤ → [ ⟨ 0 , 𝑟 ⟩ ] = ( ℤ × { 𝑟 } ) )
46 45 eqcomd ( 𝑟 ∈ ℤ → ( ℤ × { 𝑟 } ) = [ ⟨ 0 , 𝑟 ⟩ ] )
47 46 adantr ( ( 𝑟 ∈ ℤ ∧ 𝑝 = ( ℤ × { 𝑟 } ) ) → ( ℤ × { 𝑟 } ) = [ ⟨ 0 , 𝑟 ⟩ ] )
48 38 42 47 rspcedvd ( ( 𝑟 ∈ ℤ ∧ 𝑝 = ( ℤ × { 𝑟 } ) ) → ∃ 𝑠 ∈ ℤ 𝑝 = [ ⟨ 𝑠 , 𝑟 ⟩ ] )
49 48 ex ( 𝑟 ∈ ℤ → ( 𝑝 = ( ℤ × { 𝑟 } ) → ∃ 𝑠 ∈ ℤ 𝑝 = [ ⟨ 𝑠 , 𝑟 ⟩ ] ) )
50 37 49 impbid ( 𝑟 ∈ ℤ → ( ∃ 𝑠 ∈ ℤ 𝑝 = [ ⟨ 𝑠 , 𝑟 ⟩ ] 𝑝 = ( ℤ × { 𝑟 } ) ) )
51 50 abbidv ( 𝑟 ∈ ℤ → { 𝑝 ∣ ∃ 𝑠 ∈ ℤ 𝑝 = [ ⟨ 𝑠 , 𝑟 ⟩ ] } = { 𝑝𝑝 = ( ℤ × { 𝑟 } ) } )
52 iunsn 𝑠 ∈ ℤ { [ ⟨ 𝑠 , 𝑟 ⟩ ] } = { 𝑝 ∣ ∃ 𝑠 ∈ ℤ 𝑝 = [ ⟨ 𝑠 , 𝑟 ⟩ ] }
53 df-sn { ( ℤ × { 𝑟 } ) } = { 𝑝𝑝 = ( ℤ × { 𝑟 } ) }
54 51 52 53 3eqtr4g ( 𝑟 ∈ ℤ → 𝑠 ∈ ℤ { [ ⟨ 𝑠 , 𝑟 ⟩ ] } = { ( ℤ × { 𝑟 } ) } )
55 30 54 eqtrid ( 𝑟 ∈ ℤ → 𝑠 ∈ ℤ { 𝑒𝑒 = [ ⟨ 𝑠 , 𝑟 ⟩ ] } = { ( ℤ × { 𝑟 } ) } )
56 55 iuneq2i 𝑟 ∈ ℤ 𝑠 ∈ ℤ { 𝑒𝑒 = [ ⟨ 𝑠 , 𝑟 ⟩ ] } = 𝑟 ∈ ℤ { ( ℤ × { 𝑟 } ) }
57 26 56 eqtri 𝑠 ∈ ℤ 𝑟 ∈ ℤ { 𝑒𝑒 = [ ⟨ 𝑠 , 𝑟 ⟩ ] } = 𝑟 ∈ ℤ { ( ℤ × { 𝑟 } ) }
58 24 25 57 3eqtr3i { 𝑒 ∣ ∃ 𝑝 ∈ ( ℤ × ℤ ) 𝑒 = [ 𝑝 ] } = 𝑟 ∈ ℤ { ( ℤ × { 𝑟 } ) }
59 7 17 58 3eqtr3i ( Base ‘ 𝑄 ) = 𝑟 ∈ ℤ { ( ℤ × { 𝑟 } ) }