Step |
Hyp |
Ref |
Expression |
1 |
|
pzriprng.r |
|
2 |
|
pzriprng.i |
|
3 |
|
pzriprng.j |
|
4 |
|
pzriprng.1 |
|
5 |
|
pzriprng.g |
|
6 |
|
pzriprng.q |
|
7 |
|
df-qs |
|
8 |
6
|
a1i |
|
9 |
1
|
pzriprnglem2 |
|
10 |
9
|
eqcomi |
|
11 |
10
|
a1i |
|
12 |
|
ovexd |
|
13 |
5 12
|
eqeltrid |
|
14 |
1
|
pzriprnglem1 |
|
15 |
14
|
a1i |
|
16 |
8 11 13 15
|
qusbas |
|
17 |
5 16
|
ax-mp |
|
18 |
|
nfcv |
|
19 |
|
nfcv |
|
20 |
|
nfcv |
|
21 |
|
eceq1 |
|
22 |
21
|
eqeq2d |
|
23 |
22
|
abbidv |
|
24 |
18 19 20 23
|
iunxpf |
|
25 |
|
iunab |
|
26 |
|
iuncom |
|
27 |
|
df-sn |
|
28 |
27
|
eqcomi |
|
29 |
28
|
a1i |
|
30 |
29
|
iuneq2i |
|
31 |
|
simpr |
|
32 |
1 2 3 4 5
|
pzriprnglem10 |
|
33 |
32
|
ancoms |
|
34 |
33
|
adantr |
|
35 |
31 34
|
eqtrd |
|
36 |
35
|
ex |
|
37 |
36
|
rexlimdva |
|
38 |
|
0zd |
|
39 |
|
simpr |
|
40 |
|
opeq1 |
|
41 |
40
|
eceq1d |
|
42 |
39 41
|
eqeqan12d |
|
43 |
|
0zd |
|
44 |
1 2 3 4 5
|
pzriprnglem10 |
|
45 |
43 44
|
mpancom |
|
46 |
45
|
eqcomd |
|
47 |
46
|
adantr |
|
48 |
38 42 47
|
rspcedvd |
|
49 |
48
|
ex |
|
50 |
37 49
|
impbid |
|
51 |
50
|
abbidv |
|
52 |
|
iunsn |
|
53 |
|
df-sn |
|
54 |
51 52 53
|
3eqtr4g |
|
55 |
30 54
|
eqtrid |
|
56 |
55
|
iuneq2i |
|
57 |
26 56
|
eqtri |
|
58 |
24 25 57
|
3eqtr3i |
|
59 |
7 17 58
|
3eqtr3i |
|