| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pzriprng.r |
|
| 2 |
|
pzriprng.i |
|
| 3 |
|
pzriprng.j |
|
| 4 |
|
pzriprng.1 |
|
| 5 |
|
pzriprng.g |
|
| 6 |
|
pzriprng.q |
|
| 7 |
|
df-qs |
|
| 8 |
6
|
a1i |
|
| 9 |
1
|
pzriprnglem2 |
|
| 10 |
9
|
eqcomi |
|
| 11 |
10
|
a1i |
|
| 12 |
|
ovexd |
|
| 13 |
5 12
|
eqeltrid |
|
| 14 |
1
|
pzriprnglem1 |
|
| 15 |
14
|
a1i |
|
| 16 |
8 11 13 15
|
qusbas |
|
| 17 |
5 16
|
ax-mp |
|
| 18 |
|
nfcv |
|
| 19 |
|
nfcv |
|
| 20 |
|
nfcv |
|
| 21 |
|
eceq1 |
|
| 22 |
21
|
eqeq2d |
|
| 23 |
22
|
abbidv |
|
| 24 |
18 19 20 23
|
iunxpf |
|
| 25 |
|
iunab |
|
| 26 |
|
iuncom |
|
| 27 |
|
df-sn |
|
| 28 |
27
|
eqcomi |
|
| 29 |
28
|
a1i |
|
| 30 |
29
|
iuneq2i |
|
| 31 |
|
simpr |
|
| 32 |
1 2 3 4 5
|
pzriprnglem10 |
|
| 33 |
32
|
ancoms |
|
| 34 |
33
|
adantr |
|
| 35 |
31 34
|
eqtrd |
|
| 36 |
35
|
ex |
|
| 37 |
36
|
rexlimdva |
|
| 38 |
|
0zd |
|
| 39 |
|
simpr |
|
| 40 |
|
opeq1 |
|
| 41 |
40
|
eceq1d |
|
| 42 |
39 41
|
eqeqan12d |
|
| 43 |
|
0zd |
|
| 44 |
1 2 3 4 5
|
pzriprnglem10 |
|
| 45 |
43 44
|
mpancom |
|
| 46 |
45
|
eqcomd |
|
| 47 |
46
|
adantr |
|
| 48 |
38 42 47
|
rspcedvd |
|
| 49 |
48
|
ex |
|
| 50 |
37 49
|
impbid |
|
| 51 |
50
|
abbidv |
|
| 52 |
|
iunsn |
|
| 53 |
|
df-sn |
|
| 54 |
51 52 53
|
3eqtr4g |
|
| 55 |
30 54
|
eqtrid |
|
| 56 |
55
|
iuneq2i |
|
| 57 |
26 56
|
eqtri |
|
| 58 |
24 25 57
|
3eqtr3i |
|
| 59 |
7 17 58
|
3eqtr3i |
|