Metamath Proof Explorer


Theorem pzriprng

Description: The non-unital ring ( ZZring Xs. ZZring ) is unital. Direct proof in contrast to pzriprngALT . (Contributed by AV, 25-Mar-2025)

Ref Expression
Assertion pzriprng ring×𝑠ringRing

Proof

Step Hyp Ref Expression
1 zringring ringRing
2 eqid ring×𝑠ring=ring×𝑠ring
3 id ringRingringRing
4 2 3 3 xpsringd ringRingring×𝑠ringRing
5 1 4 ax-mp ring×𝑠ringRing