Description: The non-unital ring ( ZZring Xs. ZZring ) is unital. Direct proof in contrast to pzriprngALT . (Contributed by AV, 25-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pzriprng | ⊢ ( ℤring ×s ℤring ) ∈ Ring |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zringring | ⊢ ℤring ∈ Ring | |
| 2 | eqid | ⊢ ( ℤring ×s ℤring ) = ( ℤring ×s ℤring ) | |
| 3 | id | ⊢ ( ℤring ∈ Ring → ℤring ∈ Ring ) | |
| 4 | 2 3 3 | xpsringd | ⊢ ( ℤring ∈ Ring → ( ℤring ×s ℤring ) ∈ Ring ) |
| 5 | 1 4 | ax-mp | ⊢ ( ℤring ×s ℤring ) ∈ Ring |