Metamath Proof Explorer


Theorem pzriprng

Description: The non-unital ring ( ZZring Xs. ZZring ) is unital. Direct proof in contrast to pzriprngALT . (Contributed by AV, 25-Mar-2025)

Ref Expression
Assertion pzriprng ( ℤring ×sring ) ∈ Ring

Proof

Step Hyp Ref Expression
1 zringring ring ∈ Ring
2 eqid ( ℤring ×sring ) = ( ℤring ×sring )
3 id ( ℤring ∈ Ring → ℤring ∈ Ring )
4 2 3 3 xpsringd ( ℤring ∈ Ring → ( ℤring ×sring ) ∈ Ring )
5 1 4 ax-mp ( ℤring ×sring ) ∈ Ring