Description: The non-unital ring ( ZZring Xs. ZZring ) is unital. Direct proof in contrast to pzriprngALT . (Contributed by AV, 25-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pzriprng | |- ( ZZring Xs. ZZring ) e. Ring |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zringring | |- ZZring e. Ring |
|
| 2 | eqid | |- ( ZZring Xs. ZZring ) = ( ZZring Xs. ZZring ) |
|
| 3 | id | |- ( ZZring e. Ring -> ZZring e. Ring ) |
|
| 4 | 2 3 3 | xpsringd | |- ( ZZring e. Ring -> ( ZZring Xs. ZZring ) e. Ring ) |
| 5 | 1 4 | ax-mp | |- ( ZZring Xs. ZZring ) e. Ring |