Metamath Proof Explorer


Theorem pzriprng

Description: The non-unital ring ( ZZring Xs. ZZring ) is unital. Direct proof in contrast to pzriprngALT . (Contributed by AV, 25-Mar-2025)

Ref Expression
Assertion pzriprng
|- ( ZZring Xs. ZZring ) e. Ring

Proof

Step Hyp Ref Expression
1 zringring
 |-  ZZring e. Ring
2 eqid
 |-  ( ZZring Xs. ZZring ) = ( ZZring Xs. ZZring )
3 id
 |-  ( ZZring e. Ring -> ZZring e. Ring )
4 2 3 3 xpsringd
 |-  ( ZZring e. Ring -> ( ZZring Xs. ZZring ) e. Ring )
5 1 4 ax-mp
 |-  ( ZZring Xs. ZZring ) e. Ring