| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|- ( i = ( ZZ X. { 0 } ) -> ( ( ZZring Xs. ZZring ) |`s i ) = ( ( ZZring Xs. ZZring ) |`s ( ZZ X. { 0 } ) ) ) |
| 2 |
1
|
eleq1d |
|- ( i = ( ZZ X. { 0 } ) -> ( ( ( ZZring Xs. ZZring ) |`s i ) e. Ring <-> ( ( ZZring Xs. ZZring ) |`s ( ZZ X. { 0 } ) ) e. Ring ) ) |
| 3 |
|
oveq2 |
|- ( i = ( ZZ X. { 0 } ) -> ( ( ZZring Xs. ZZring ) ~QG i ) = ( ( ZZring Xs. ZZring ) ~QG ( ZZ X. { 0 } ) ) ) |
| 4 |
3
|
oveq2d |
|- ( i = ( ZZ X. { 0 } ) -> ( ( ZZring Xs. ZZring ) /s ( ( ZZring Xs. ZZring ) ~QG i ) ) = ( ( ZZring Xs. ZZring ) /s ( ( ZZring Xs. ZZring ) ~QG ( ZZ X. { 0 } ) ) ) ) |
| 5 |
4
|
eleq1d |
|- ( i = ( ZZ X. { 0 } ) -> ( ( ( ZZring Xs. ZZring ) /s ( ( ZZring Xs. ZZring ) ~QG i ) ) e. Ring <-> ( ( ZZring Xs. ZZring ) /s ( ( ZZring Xs. ZZring ) ~QG ( ZZ X. { 0 } ) ) ) e. Ring ) ) |
| 6 |
2 5
|
anbi12d |
|- ( i = ( ZZ X. { 0 } ) -> ( ( ( ( ZZring Xs. ZZring ) |`s i ) e. Ring /\ ( ( ZZring Xs. ZZring ) /s ( ( ZZring Xs. ZZring ) ~QG i ) ) e. Ring ) <-> ( ( ( ZZring Xs. ZZring ) |`s ( ZZ X. { 0 } ) ) e. Ring /\ ( ( ZZring Xs. ZZring ) /s ( ( ZZring Xs. ZZring ) ~QG ( ZZ X. { 0 } ) ) ) e. Ring ) ) ) |
| 7 |
|
eqid |
|- ( ZZring Xs. ZZring ) = ( ZZring Xs. ZZring ) |
| 8 |
|
eqid |
|- ( ZZ X. { 0 } ) = ( ZZ X. { 0 } ) |
| 9 |
|
eqid |
|- ( ( ZZring Xs. ZZring ) |`s ( ZZ X. { 0 } ) ) = ( ( ZZring Xs. ZZring ) |`s ( ZZ X. { 0 } ) ) |
| 10 |
7 8 9
|
pzriprnglem8 |
|- ( ZZ X. { 0 } ) e. ( 2Ideal ` ( ZZring Xs. ZZring ) ) |
| 11 |
10
|
a1i |
|- ( T. -> ( ZZ X. { 0 } ) e. ( 2Ideal ` ( ZZring Xs. ZZring ) ) ) |
| 12 |
7 8 9
|
pzriprnglem7 |
|- ( ( ZZring Xs. ZZring ) |`s ( ZZ X. { 0 } ) ) e. Ring |
| 13 |
12
|
a1i |
|- ( T. -> ( ( ZZring Xs. ZZring ) |`s ( ZZ X. { 0 } ) ) e. Ring ) |
| 14 |
|
eqid |
|- ( 1r ` ( ( ZZring Xs. ZZring ) |`s ( ZZ X. { 0 } ) ) ) = ( 1r ` ( ( ZZring Xs. ZZring ) |`s ( ZZ X. { 0 } ) ) ) |
| 15 |
|
eqid |
|- ( ( ZZring Xs. ZZring ) ~QG ( ZZ X. { 0 } ) ) = ( ( ZZring Xs. ZZring ) ~QG ( ZZ X. { 0 } ) ) |
| 16 |
|
eqid |
|- ( ( ZZring Xs. ZZring ) /s ( ( ZZring Xs. ZZring ) ~QG ( ZZ X. { 0 } ) ) ) = ( ( ZZring Xs. ZZring ) /s ( ( ZZring Xs. ZZring ) ~QG ( ZZ X. { 0 } ) ) ) |
| 17 |
7 8 9 14 15 16
|
pzriprnglem13 |
|- ( ( ZZring Xs. ZZring ) /s ( ( ZZring Xs. ZZring ) ~QG ( ZZ X. { 0 } ) ) ) e. Ring |
| 18 |
13 17
|
jctir |
|- ( T. -> ( ( ( ZZring Xs. ZZring ) |`s ( ZZ X. { 0 } ) ) e. Ring /\ ( ( ZZring Xs. ZZring ) /s ( ( ZZring Xs. ZZring ) ~QG ( ZZ X. { 0 } ) ) ) e. Ring ) ) |
| 19 |
6 11 18
|
rspcedvdw |
|- ( T. -> E. i e. ( 2Ideal ` ( ZZring Xs. ZZring ) ) ( ( ( ZZring Xs. ZZring ) |`s i ) e. Ring /\ ( ( ZZring Xs. ZZring ) /s ( ( ZZring Xs. ZZring ) ~QG i ) ) e. Ring ) ) |
| 20 |
19
|
mptru |
|- E. i e. ( 2Ideal ` ( ZZring Xs. ZZring ) ) ( ( ( ZZring Xs. ZZring ) |`s i ) e. Ring /\ ( ( ZZring Xs. ZZring ) /s ( ( ZZring Xs. ZZring ) ~QG i ) ) e. Ring ) |
| 21 |
7
|
pzriprnglem1 |
|- ( ZZring Xs. ZZring ) e. Rng |
| 22 |
|
ring2idlqusb |
|- ( ( ZZring Xs. ZZring ) e. Rng -> ( ( ZZring Xs. ZZring ) e. Ring <-> E. i e. ( 2Ideal ` ( ZZring Xs. ZZring ) ) ( ( ( ZZring Xs. ZZring ) |`s i ) e. Ring /\ ( ( ZZring Xs. ZZring ) /s ( ( ZZring Xs. ZZring ) ~QG i ) ) e. Ring ) ) ) |
| 23 |
21 22
|
ax-mp |
|- ( ( ZZring Xs. ZZring ) e. Ring <-> E. i e. ( 2Ideal ` ( ZZring Xs. ZZring ) ) ( ( ( ZZring Xs. ZZring ) |`s i ) e. Ring /\ ( ( ZZring Xs. ZZring ) /s ( ( ZZring Xs. ZZring ) ~QG i ) ) e. Ring ) ) |
| 24 |
20 23
|
mpbir |
|- ( ZZring Xs. ZZring ) e. Ring |