Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( i = ( ZZ X. { 0 } ) -> ( ( ZZring Xs. ZZring ) |`s i ) = ( ( ZZring Xs. ZZring ) |`s ( ZZ X. { 0 } ) ) ) |
2 |
1
|
eleq1d |
|- ( i = ( ZZ X. { 0 } ) -> ( ( ( ZZring Xs. ZZring ) |`s i ) e. Ring <-> ( ( ZZring Xs. ZZring ) |`s ( ZZ X. { 0 } ) ) e. Ring ) ) |
3 |
|
oveq2 |
|- ( i = ( ZZ X. { 0 } ) -> ( ( ZZring Xs. ZZring ) ~QG i ) = ( ( ZZring Xs. ZZring ) ~QG ( ZZ X. { 0 } ) ) ) |
4 |
3
|
oveq2d |
|- ( i = ( ZZ X. { 0 } ) -> ( ( ZZring Xs. ZZring ) /s ( ( ZZring Xs. ZZring ) ~QG i ) ) = ( ( ZZring Xs. ZZring ) /s ( ( ZZring Xs. ZZring ) ~QG ( ZZ X. { 0 } ) ) ) ) |
5 |
4
|
eleq1d |
|- ( i = ( ZZ X. { 0 } ) -> ( ( ( ZZring Xs. ZZring ) /s ( ( ZZring Xs. ZZring ) ~QG i ) ) e. Ring <-> ( ( ZZring Xs. ZZring ) /s ( ( ZZring Xs. ZZring ) ~QG ( ZZ X. { 0 } ) ) ) e. Ring ) ) |
6 |
2 5
|
anbi12d |
|- ( i = ( ZZ X. { 0 } ) -> ( ( ( ( ZZring Xs. ZZring ) |`s i ) e. Ring /\ ( ( ZZring Xs. ZZring ) /s ( ( ZZring Xs. ZZring ) ~QG i ) ) e. Ring ) <-> ( ( ( ZZring Xs. ZZring ) |`s ( ZZ X. { 0 } ) ) e. Ring /\ ( ( ZZring Xs. ZZring ) /s ( ( ZZring Xs. ZZring ) ~QG ( ZZ X. { 0 } ) ) ) e. Ring ) ) ) |
7 |
|
eqid |
|- ( ZZring Xs. ZZring ) = ( ZZring Xs. ZZring ) |
8 |
|
eqid |
|- ( ZZ X. { 0 } ) = ( ZZ X. { 0 } ) |
9 |
|
eqid |
|- ( ( ZZring Xs. ZZring ) |`s ( ZZ X. { 0 } ) ) = ( ( ZZring Xs. ZZring ) |`s ( ZZ X. { 0 } ) ) |
10 |
7 8 9
|
pzriprnglem8 |
|- ( ZZ X. { 0 } ) e. ( 2Ideal ` ( ZZring Xs. ZZring ) ) |
11 |
10
|
a1i |
|- ( T. -> ( ZZ X. { 0 } ) e. ( 2Ideal ` ( ZZring Xs. ZZring ) ) ) |
12 |
7 8 9
|
pzriprnglem7 |
|- ( ( ZZring Xs. ZZring ) |`s ( ZZ X. { 0 } ) ) e. Ring |
13 |
12
|
a1i |
|- ( T. -> ( ( ZZring Xs. ZZring ) |`s ( ZZ X. { 0 } ) ) e. Ring ) |
14 |
|
eqid |
|- ( 1r ` ( ( ZZring Xs. ZZring ) |`s ( ZZ X. { 0 } ) ) ) = ( 1r ` ( ( ZZring Xs. ZZring ) |`s ( ZZ X. { 0 } ) ) ) |
15 |
|
eqid |
|- ( ( ZZring Xs. ZZring ) ~QG ( ZZ X. { 0 } ) ) = ( ( ZZring Xs. ZZring ) ~QG ( ZZ X. { 0 } ) ) |
16 |
|
eqid |
|- ( ( ZZring Xs. ZZring ) /s ( ( ZZring Xs. ZZring ) ~QG ( ZZ X. { 0 } ) ) ) = ( ( ZZring Xs. ZZring ) /s ( ( ZZring Xs. ZZring ) ~QG ( ZZ X. { 0 } ) ) ) |
17 |
7 8 9 14 15 16
|
pzriprnglem13 |
|- ( ( ZZring Xs. ZZring ) /s ( ( ZZring Xs. ZZring ) ~QG ( ZZ X. { 0 } ) ) ) e. Ring |
18 |
13 17
|
jctir |
|- ( T. -> ( ( ( ZZring Xs. ZZring ) |`s ( ZZ X. { 0 } ) ) e. Ring /\ ( ( ZZring Xs. ZZring ) /s ( ( ZZring Xs. ZZring ) ~QG ( ZZ X. { 0 } ) ) ) e. Ring ) ) |
19 |
6 11 18
|
rspcedvdw |
|- ( T. -> E. i e. ( 2Ideal ` ( ZZring Xs. ZZring ) ) ( ( ( ZZring Xs. ZZring ) |`s i ) e. Ring /\ ( ( ZZring Xs. ZZring ) /s ( ( ZZring Xs. ZZring ) ~QG i ) ) e. Ring ) ) |
20 |
19
|
mptru |
|- E. i e. ( 2Ideal ` ( ZZring Xs. ZZring ) ) ( ( ( ZZring Xs. ZZring ) |`s i ) e. Ring /\ ( ( ZZring Xs. ZZring ) /s ( ( ZZring Xs. ZZring ) ~QG i ) ) e. Ring ) |
21 |
7
|
pzriprnglem1 |
|- ( ZZring Xs. ZZring ) e. Rng |
22 |
|
ring2idlqusb |
|- ( ( ZZring Xs. ZZring ) e. Rng -> ( ( ZZring Xs. ZZring ) e. Ring <-> E. i e. ( 2Ideal ` ( ZZring Xs. ZZring ) ) ( ( ( ZZring Xs. ZZring ) |`s i ) e. Ring /\ ( ( ZZring Xs. ZZring ) /s ( ( ZZring Xs. ZZring ) ~QG i ) ) e. Ring ) ) ) |
23 |
21 22
|
ax-mp |
|- ( ( ZZring Xs. ZZring ) e. Ring <-> E. i e. ( 2Ideal ` ( ZZring Xs. ZZring ) ) ( ( ( ZZring Xs. ZZring ) |`s i ) e. Ring /\ ( ( ZZring Xs. ZZring ) /s ( ( ZZring Xs. ZZring ) ~QG i ) ) e. Ring ) ) |
24 |
20 23
|
mpbir |
|- ( ZZring Xs. ZZring ) e. Ring |