Step |
Hyp |
Ref |
Expression |
1 |
|
pzriprng.r |
|- R = ( ZZring Xs. ZZring ) |
2 |
|
pzriprng.i |
|- I = ( ZZ X. { 0 } ) |
3 |
|
pzriprng.j |
|- J = ( R |`s I ) |
4 |
1
|
pzriprnglem2 |
|- ( Base ` R ) = ( ZZ X. ZZ ) |
5 |
4
|
eleq2i |
|- ( x e. ( Base ` R ) <-> x e. ( ZZ X. ZZ ) ) |
6 |
|
elxp2 |
|- ( x e. ( ZZ X. ZZ ) <-> E. a e. ZZ E. b e. ZZ x = <. a , b >. ) |
7 |
5 6
|
bitri |
|- ( x e. ( Base ` R ) <-> E. a e. ZZ E. b e. ZZ x = <. a , b >. ) |
8 |
1 2
|
pzriprnglem3 |
|- ( y e. I <-> E. c e. ZZ y = <. c , 0 >. ) |
9 |
|
simpll |
|- ( ( ( a e. ZZ /\ b e. ZZ ) /\ c e. ZZ ) -> a e. ZZ ) |
10 |
|
simpr |
|- ( ( ( a e. ZZ /\ b e. ZZ ) /\ c e. ZZ ) -> c e. ZZ ) |
11 |
9 10
|
zmulcld |
|- ( ( ( a e. ZZ /\ b e. ZZ ) /\ c e. ZZ ) -> ( a x. c ) e. ZZ ) |
12 |
|
zcn |
|- ( b e. ZZ -> b e. CC ) |
13 |
12
|
adantl |
|- ( ( a e. ZZ /\ b e. ZZ ) -> b e. CC ) |
14 |
13
|
adantr |
|- ( ( ( a e. ZZ /\ b e. ZZ ) /\ c e. ZZ ) -> b e. CC ) |
15 |
14
|
mul01d |
|- ( ( ( a e. ZZ /\ b e. ZZ ) /\ c e. ZZ ) -> ( b x. 0 ) = 0 ) |
16 |
|
ovex |
|- ( b x. 0 ) e. _V |
17 |
16
|
elsn |
|- ( ( b x. 0 ) e. { 0 } <-> ( b x. 0 ) = 0 ) |
18 |
15 17
|
sylibr |
|- ( ( ( a e. ZZ /\ b e. ZZ ) /\ c e. ZZ ) -> ( b x. 0 ) e. { 0 } ) |
19 |
11 18
|
opelxpd |
|- ( ( ( a e. ZZ /\ b e. ZZ ) /\ c e. ZZ ) -> <. ( a x. c ) , ( b x. 0 ) >. e. ( ZZ X. { 0 } ) ) |
20 |
10 9
|
zmulcld |
|- ( ( ( a e. ZZ /\ b e. ZZ ) /\ c e. ZZ ) -> ( c x. a ) e. ZZ ) |
21 |
14
|
mul02d |
|- ( ( ( a e. ZZ /\ b e. ZZ ) /\ c e. ZZ ) -> ( 0 x. b ) = 0 ) |
22 |
|
ovex |
|- ( 0 x. b ) e. _V |
23 |
22
|
elsn |
|- ( ( 0 x. b ) e. { 0 } <-> ( 0 x. b ) = 0 ) |
24 |
21 23
|
sylibr |
|- ( ( ( a e. ZZ /\ b e. ZZ ) /\ c e. ZZ ) -> ( 0 x. b ) e. { 0 } ) |
25 |
20 24
|
opelxpd |
|- ( ( ( a e. ZZ /\ b e. ZZ ) /\ c e. ZZ ) -> <. ( c x. a ) , ( 0 x. b ) >. e. ( ZZ X. { 0 } ) ) |
26 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
27 |
|
zringring |
|- ZZring e. Ring |
28 |
27
|
a1i |
|- ( ( ( a e. ZZ /\ b e. ZZ ) /\ c e. ZZ ) -> ZZring e. Ring ) |
29 |
|
simplr |
|- ( ( ( a e. ZZ /\ b e. ZZ ) /\ c e. ZZ ) -> b e. ZZ ) |
30 |
|
0zd |
|- ( ( ( a e. ZZ /\ b e. ZZ ) /\ c e. ZZ ) -> 0 e. ZZ ) |
31 |
29 30
|
zmulcld |
|- ( ( ( a e. ZZ /\ b e. ZZ ) /\ c e. ZZ ) -> ( b x. 0 ) e. ZZ ) |
32 |
|
zringmulr |
|- x. = ( .r ` ZZring ) |
33 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
34 |
1 26 26 28 28 9 29 10 30 11 31 32 32 33
|
xpsmul |
|- ( ( ( a e. ZZ /\ b e. ZZ ) /\ c e. ZZ ) -> ( <. a , b >. ( .r ` R ) <. c , 0 >. ) = <. ( a x. c ) , ( b x. 0 ) >. ) |
35 |
34
|
eleq1d |
|- ( ( ( a e. ZZ /\ b e. ZZ ) /\ c e. ZZ ) -> ( ( <. a , b >. ( .r ` R ) <. c , 0 >. ) e. ( ZZ X. { 0 } ) <-> <. ( a x. c ) , ( b x. 0 ) >. e. ( ZZ X. { 0 } ) ) ) |
36 |
|
simpl |
|- ( ( c e. ZZ /\ ( a e. ZZ /\ b e. ZZ ) ) -> c e. ZZ ) |
37 |
|
simprl |
|- ( ( c e. ZZ /\ ( a e. ZZ /\ b e. ZZ ) ) -> a e. ZZ ) |
38 |
36 37
|
zmulcld |
|- ( ( c e. ZZ /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( c x. a ) e. ZZ ) |
39 |
38
|
ancoms |
|- ( ( ( a e. ZZ /\ b e. ZZ ) /\ c e. ZZ ) -> ( c x. a ) e. ZZ ) |
40 |
|
0zd |
|- ( ( c e. ZZ /\ ( a e. ZZ /\ b e. ZZ ) ) -> 0 e. ZZ ) |
41 |
|
simprr |
|- ( ( c e. ZZ /\ ( a e. ZZ /\ b e. ZZ ) ) -> b e. ZZ ) |
42 |
40 41
|
zmulcld |
|- ( ( c e. ZZ /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( 0 x. b ) e. ZZ ) |
43 |
42
|
ancoms |
|- ( ( ( a e. ZZ /\ b e. ZZ ) /\ c e. ZZ ) -> ( 0 x. b ) e. ZZ ) |
44 |
1 26 26 28 28 10 30 9 29 39 43 32 32 33
|
xpsmul |
|- ( ( ( a e. ZZ /\ b e. ZZ ) /\ c e. ZZ ) -> ( <. c , 0 >. ( .r ` R ) <. a , b >. ) = <. ( c x. a ) , ( 0 x. b ) >. ) |
45 |
44
|
eleq1d |
|- ( ( ( a e. ZZ /\ b e. ZZ ) /\ c e. ZZ ) -> ( ( <. c , 0 >. ( .r ` R ) <. a , b >. ) e. ( ZZ X. { 0 } ) <-> <. ( c x. a ) , ( 0 x. b ) >. e. ( ZZ X. { 0 } ) ) ) |
46 |
35 45
|
anbi12d |
|- ( ( ( a e. ZZ /\ b e. ZZ ) /\ c e. ZZ ) -> ( ( ( <. a , b >. ( .r ` R ) <. c , 0 >. ) e. ( ZZ X. { 0 } ) /\ ( <. c , 0 >. ( .r ` R ) <. a , b >. ) e. ( ZZ X. { 0 } ) ) <-> ( <. ( a x. c ) , ( b x. 0 ) >. e. ( ZZ X. { 0 } ) /\ <. ( c x. a ) , ( 0 x. b ) >. e. ( ZZ X. { 0 } ) ) ) ) |
47 |
19 25 46
|
mpbir2and |
|- ( ( ( a e. ZZ /\ b e. ZZ ) /\ c e. ZZ ) -> ( ( <. a , b >. ( .r ` R ) <. c , 0 >. ) e. ( ZZ X. { 0 } ) /\ ( <. c , 0 >. ( .r ` R ) <. a , b >. ) e. ( ZZ X. { 0 } ) ) ) |
48 |
47
|
adantr |
|- ( ( ( ( a e. ZZ /\ b e. ZZ ) /\ c e. ZZ ) /\ ( y = <. c , 0 >. /\ x = <. a , b >. ) ) -> ( ( <. a , b >. ( .r ` R ) <. c , 0 >. ) e. ( ZZ X. { 0 } ) /\ ( <. c , 0 >. ( .r ` R ) <. a , b >. ) e. ( ZZ X. { 0 } ) ) ) |
49 |
|
oveq12 |
|- ( ( x = <. a , b >. /\ y = <. c , 0 >. ) -> ( x ( .r ` R ) y ) = ( <. a , b >. ( .r ` R ) <. c , 0 >. ) ) |
50 |
49
|
ancoms |
|- ( ( y = <. c , 0 >. /\ x = <. a , b >. ) -> ( x ( .r ` R ) y ) = ( <. a , b >. ( .r ` R ) <. c , 0 >. ) ) |
51 |
50
|
adantl |
|- ( ( ( ( a e. ZZ /\ b e. ZZ ) /\ c e. ZZ ) /\ ( y = <. c , 0 >. /\ x = <. a , b >. ) ) -> ( x ( .r ` R ) y ) = ( <. a , b >. ( .r ` R ) <. c , 0 >. ) ) |
52 |
2
|
a1i |
|- ( ( ( ( a e. ZZ /\ b e. ZZ ) /\ c e. ZZ ) /\ ( y = <. c , 0 >. /\ x = <. a , b >. ) ) -> I = ( ZZ X. { 0 } ) ) |
53 |
51 52
|
eleq12d |
|- ( ( ( ( a e. ZZ /\ b e. ZZ ) /\ c e. ZZ ) /\ ( y = <. c , 0 >. /\ x = <. a , b >. ) ) -> ( ( x ( .r ` R ) y ) e. I <-> ( <. a , b >. ( .r ` R ) <. c , 0 >. ) e. ( ZZ X. { 0 } ) ) ) |
54 |
|
oveq12 |
|- ( ( y = <. c , 0 >. /\ x = <. a , b >. ) -> ( y ( .r ` R ) x ) = ( <. c , 0 >. ( .r ` R ) <. a , b >. ) ) |
55 |
54
|
adantl |
|- ( ( ( ( a e. ZZ /\ b e. ZZ ) /\ c e. ZZ ) /\ ( y = <. c , 0 >. /\ x = <. a , b >. ) ) -> ( y ( .r ` R ) x ) = ( <. c , 0 >. ( .r ` R ) <. a , b >. ) ) |
56 |
55 52
|
eleq12d |
|- ( ( ( ( a e. ZZ /\ b e. ZZ ) /\ c e. ZZ ) /\ ( y = <. c , 0 >. /\ x = <. a , b >. ) ) -> ( ( y ( .r ` R ) x ) e. I <-> ( <. c , 0 >. ( .r ` R ) <. a , b >. ) e. ( ZZ X. { 0 } ) ) ) |
57 |
53 56
|
anbi12d |
|- ( ( ( ( a e. ZZ /\ b e. ZZ ) /\ c e. ZZ ) /\ ( y = <. c , 0 >. /\ x = <. a , b >. ) ) -> ( ( ( x ( .r ` R ) y ) e. I /\ ( y ( .r ` R ) x ) e. I ) <-> ( ( <. a , b >. ( .r ` R ) <. c , 0 >. ) e. ( ZZ X. { 0 } ) /\ ( <. c , 0 >. ( .r ` R ) <. a , b >. ) e. ( ZZ X. { 0 } ) ) ) ) |
58 |
48 57
|
mpbird |
|- ( ( ( ( a e. ZZ /\ b e. ZZ ) /\ c e. ZZ ) /\ ( y = <. c , 0 >. /\ x = <. a , b >. ) ) -> ( ( x ( .r ` R ) y ) e. I /\ ( y ( .r ` R ) x ) e. I ) ) |
59 |
58
|
exp32 |
|- ( ( ( a e. ZZ /\ b e. ZZ ) /\ c e. ZZ ) -> ( y = <. c , 0 >. -> ( x = <. a , b >. -> ( ( x ( .r ` R ) y ) e. I /\ ( y ( .r ` R ) x ) e. I ) ) ) ) |
60 |
59
|
rexlimdva |
|- ( ( a e. ZZ /\ b e. ZZ ) -> ( E. c e. ZZ y = <. c , 0 >. -> ( x = <. a , b >. -> ( ( x ( .r ` R ) y ) e. I /\ ( y ( .r ` R ) x ) e. I ) ) ) ) |
61 |
60
|
com23 |
|- ( ( a e. ZZ /\ b e. ZZ ) -> ( x = <. a , b >. -> ( E. c e. ZZ y = <. c , 0 >. -> ( ( x ( .r ` R ) y ) e. I /\ ( y ( .r ` R ) x ) e. I ) ) ) ) |
62 |
61
|
rexlimivv |
|- ( E. a e. ZZ E. b e. ZZ x = <. a , b >. -> ( E. c e. ZZ y = <. c , 0 >. -> ( ( x ( .r ` R ) y ) e. I /\ ( y ( .r ` R ) x ) e. I ) ) ) |
63 |
62
|
imp |
|- ( ( E. a e. ZZ E. b e. ZZ x = <. a , b >. /\ E. c e. ZZ y = <. c , 0 >. ) -> ( ( x ( .r ` R ) y ) e. I /\ ( y ( .r ` R ) x ) e. I ) ) |
64 |
7 8 63
|
syl2anb |
|- ( ( x e. ( Base ` R ) /\ y e. I ) -> ( ( x ( .r ` R ) y ) e. I /\ ( y ( .r ` R ) x ) e. I ) ) |
65 |
64
|
rgen2 |
|- A. x e. ( Base ` R ) A. y e. I ( ( x ( .r ` R ) y ) e. I /\ ( y ( .r ` R ) x ) e. I ) |
66 |
1
|
pzriprnglem1 |
|- R e. Rng |
67 |
1 2
|
pzriprnglem4 |
|- I e. ( SubGrp ` R ) |
68 |
|
eqid |
|- ( 2Ideal ` R ) = ( 2Ideal ` R ) |
69 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
70 |
68 69 33
|
df2idl2rng |
|- ( ( R e. Rng /\ I e. ( SubGrp ` R ) ) -> ( I e. ( 2Ideal ` R ) <-> A. x e. ( Base ` R ) A. y e. I ( ( x ( .r ` R ) y ) e. I /\ ( y ( .r ` R ) x ) e. I ) ) ) |
71 |
66 67 70
|
mp2an |
|- ( I e. ( 2Ideal ` R ) <-> A. x e. ( Base ` R ) A. y e. I ( ( x ( .r ` R ) y ) e. I /\ ( y ( .r ` R ) x ) e. I ) ) |
72 |
65 71
|
mpbir |
|- I e. ( 2Ideal ` R ) |