Step |
Hyp |
Ref |
Expression |
1 |
|
pzriprng.r |
|
2 |
|
pzriprng.i |
|
3 |
|
pzriprng.j |
|
4 |
1
|
pzriprnglem2 |
|
5 |
4
|
eleq2i |
|
6 |
|
elxp2 |
|
7 |
5 6
|
bitri |
|
8 |
1 2
|
pzriprnglem3 |
|
9 |
|
simpll |
|
10 |
|
simpr |
|
11 |
9 10
|
zmulcld |
|
12 |
|
zcn |
|
13 |
12
|
adantl |
|
14 |
13
|
adantr |
|
15 |
14
|
mul01d |
|
16 |
|
ovex |
|
17 |
16
|
elsn |
|
18 |
15 17
|
sylibr |
|
19 |
11 18
|
opelxpd |
|
20 |
10 9
|
zmulcld |
|
21 |
14
|
mul02d |
|
22 |
|
ovex |
|
23 |
22
|
elsn |
|
24 |
21 23
|
sylibr |
|
25 |
20 24
|
opelxpd |
|
26 |
|
zringbas |
|
27 |
|
zringring |
|
28 |
27
|
a1i |
|
29 |
|
simplr |
|
30 |
|
0zd |
|
31 |
29 30
|
zmulcld |
|
32 |
|
zringmulr |
|
33 |
|
eqid |
|
34 |
1 26 26 28 28 9 29 10 30 11 31 32 32 33
|
xpsmul |
|
35 |
34
|
eleq1d |
|
36 |
|
simpl |
|
37 |
|
simprl |
|
38 |
36 37
|
zmulcld |
|
39 |
38
|
ancoms |
|
40 |
|
0zd |
|
41 |
|
simprr |
|
42 |
40 41
|
zmulcld |
|
43 |
42
|
ancoms |
|
44 |
1 26 26 28 28 10 30 9 29 39 43 32 32 33
|
xpsmul |
|
45 |
44
|
eleq1d |
|
46 |
35 45
|
anbi12d |
|
47 |
19 25 46
|
mpbir2and |
|
48 |
47
|
adantr |
|
49 |
|
oveq12 |
|
50 |
49
|
ancoms |
|
51 |
50
|
adantl |
|
52 |
2
|
a1i |
|
53 |
51 52
|
eleq12d |
|
54 |
|
oveq12 |
|
55 |
54
|
adantl |
|
56 |
55 52
|
eleq12d |
|
57 |
53 56
|
anbi12d |
|
58 |
48 57
|
mpbird |
|
59 |
58
|
exp32 |
|
60 |
59
|
rexlimdva |
|
61 |
60
|
com23 |
|
62 |
61
|
rexlimivv |
|
63 |
62
|
imp |
|
64 |
7 8 63
|
syl2anb |
|
65 |
64
|
rgen2 |
|
66 |
1
|
pzriprnglem1 |
|
67 |
1 2
|
pzriprnglem4 |
|
68 |
|
eqid |
|
69 |
|
eqid |
|
70 |
68 69 33
|
df2idl2rng |
|
71 |
66 67 70
|
mp2an |
|
72 |
65 71
|
mpbir |
|