Metamath Proof Explorer


Theorem pzriprnglem8

Description: Lemma 8 for pzriprng : I resp. J is a two-sided ideal of the non-unital ring R . (Contributed by AV, 21-Mar-2025)

Ref Expression
Hypotheses pzriprng.r R = ring × 𝑠 ring
pzriprng.i I = × 0
pzriprng.j J = R 𝑠 I
Assertion pzriprnglem8 I 2Ideal R

Proof

Step Hyp Ref Expression
1 pzriprng.r R = ring × 𝑠 ring
2 pzriprng.i I = × 0
3 pzriprng.j J = R 𝑠 I
4 1 pzriprnglem2 Base R = ×
5 4 eleq2i x Base R x ×
6 elxp2 x × a b x = a b
7 5 6 bitri x Base R a b x = a b
8 1 2 pzriprnglem3 y I c y = c 0
9 simpll a b c a
10 simpr a b c c
11 9 10 zmulcld a b c a c
12 zcn b b
13 12 adantl a b b
14 13 adantr a b c b
15 14 mul01d a b c b 0 = 0
16 ovex b 0 V
17 16 elsn b 0 0 b 0 = 0
18 15 17 sylibr a b c b 0 0
19 11 18 opelxpd a b c a c b 0 × 0
20 10 9 zmulcld a b c c a
21 14 mul02d a b c 0 b = 0
22 ovex 0 b V
23 22 elsn 0 b 0 0 b = 0
24 21 23 sylibr a b c 0 b 0
25 20 24 opelxpd a b c c a 0 b × 0
26 zringbas = Base ring
27 zringring ring Ring
28 27 a1i a b c ring Ring
29 simplr a b c b
30 0zd a b c 0
31 29 30 zmulcld a b c b 0
32 zringmulr × = ring
33 eqid R = R
34 1 26 26 28 28 9 29 10 30 11 31 32 32 33 xpsmul a b c a b R c 0 = a c b 0
35 34 eleq1d a b c a b R c 0 × 0 a c b 0 × 0
36 simpl c a b c
37 simprl c a b a
38 36 37 zmulcld c a b c a
39 38 ancoms a b c c a
40 0zd c a b 0
41 simprr c a b b
42 40 41 zmulcld c a b 0 b
43 42 ancoms a b c 0 b
44 1 26 26 28 28 10 30 9 29 39 43 32 32 33 xpsmul a b c c 0 R a b = c a 0 b
45 44 eleq1d a b c c 0 R a b × 0 c a 0 b × 0
46 35 45 anbi12d a b c a b R c 0 × 0 c 0 R a b × 0 a c b 0 × 0 c a 0 b × 0
47 19 25 46 mpbir2and a b c a b R c 0 × 0 c 0 R a b × 0
48 47 adantr a b c y = c 0 x = a b a b R c 0 × 0 c 0 R a b × 0
49 oveq12 x = a b y = c 0 x R y = a b R c 0
50 49 ancoms y = c 0 x = a b x R y = a b R c 0
51 50 adantl a b c y = c 0 x = a b x R y = a b R c 0
52 2 a1i a b c y = c 0 x = a b I = × 0
53 51 52 eleq12d a b c y = c 0 x = a b x R y I a b R c 0 × 0
54 oveq12 y = c 0 x = a b y R x = c 0 R a b
55 54 adantl a b c y = c 0 x = a b y R x = c 0 R a b
56 55 52 eleq12d a b c y = c 0 x = a b y R x I c 0 R a b × 0
57 53 56 anbi12d a b c y = c 0 x = a b x R y I y R x I a b R c 0 × 0 c 0 R a b × 0
58 48 57 mpbird a b c y = c 0 x = a b x R y I y R x I
59 58 exp32 a b c y = c 0 x = a b x R y I y R x I
60 59 rexlimdva a b c y = c 0 x = a b x R y I y R x I
61 60 com23 a b x = a b c y = c 0 x R y I y R x I
62 61 rexlimivv a b x = a b c y = c 0 x R y I y R x I
63 62 imp a b x = a b c y = c 0 x R y I y R x I
64 7 8 63 syl2anb x Base R y I x R y I y R x I
65 64 rgen2 x Base R y I x R y I y R x I
66 1 pzriprnglem1 R Rng
67 1 2 pzriprnglem4 I SubGrp R
68 eqid 2Ideal R = 2Ideal R
69 eqid Base R = Base R
70 68 69 33 df2idl2rng R Rng I SubGrp R I 2Ideal R x Base R y I x R y I y R x I
71 66 67 70 mp2an I 2Ideal R x Base R y I x R y I y R x I
72 65 71 mpbir I 2Ideal R