Metamath Proof Explorer


Theorem pzriprnglem9

Description: Lemma 9 for pzriprng : The ring unity of the ring J . (Contributed by AV, 22-Mar-2025)

Ref Expression
Hypotheses pzriprng.r R = ring × 𝑠 ring
pzriprng.i I = × 0
pzriprng.j J = R 𝑠 I
pzriprng.1 1 ˙ = 1 J
Assertion pzriprnglem9 1 ˙ = 1 0

Proof

Step Hyp Ref Expression
1 pzriprng.r R = ring × 𝑠 ring
2 pzriprng.i I = × 0
3 pzriprng.j J = R 𝑠 I
4 pzriprng.1 1 ˙ = 1 J
5 1z 1
6 c0ex 0 V
7 6 snid 0 0
8 2 eleq2i 1 0 I 1 0 × 0
9 opelxp 1 0 × 0 1 0 0
10 8 9 bitri 1 0 I 1 0 0
11 5 7 10 mpbir2an 1 0 I
12 1 2 3 pzriprnglem6 x I 1 0 J x = x x J 1 0 = x
13 12 rgen x I 1 0 J x = x x J 1 0 = x
14 11 13 pm3.2i 1 0 I x I 1 0 J x = x x J 1 0 = x
15 1 2 3 pzriprnglem7 J Ring
16 1 2 pzriprnglem5 I SubRng R
17 3 subrngbas I SubRng R I = Base J
18 16 17 ax-mp I = Base J
19 eqid J = J
20 18 19 4 isringid J Ring 1 0 I x I 1 0 J x = x x J 1 0 = x 1 ˙ = 1 0
21 15 20 ax-mp 1 0 I x I 1 0 J x = x x J 1 0 = x 1 ˙ = 1 0
22 14 21 mpbi 1 ˙ = 1 0