Metamath Proof Explorer


Theorem pzriprnglem7

Description: Lemma 7 for pzriprng : J is a unital ring. (Contributed by AV, 19-Mar-2025)

Ref Expression
Hypotheses pzriprng.r R=ring×𝑠ring
pzriprng.i I=×0
pzriprng.j J=R𝑠I
Assertion pzriprnglem7 JRing

Proof

Step Hyp Ref Expression
1 pzriprng.r R=ring×𝑠ring
2 pzriprng.i I=×0
3 pzriprng.j J=R𝑠I
4 1 2 pzriprnglem5 Could not format I e. ( SubRng ` R ) : No typesetting found for |- I e. ( SubRng ` R ) with typecode |-
5 3 subrngrng Could not format ( I e. ( SubRng ` R ) -> J e. Rng ) : No typesetting found for |- ( I e. ( SubRng ` R ) -> J e. Rng ) with typecode |-
6 4 5 ax-mp JRng
7 1z 1
8 c0ex 0V
9 8 snid 00
10 7 9 opelxpii 10×0
11 3 subrngbas Could not format ( I e. ( SubRng ` R ) -> I = ( Base ` J ) ) : No typesetting found for |- ( I e. ( SubRng ` R ) -> I = ( Base ` J ) ) with typecode |-
12 4 11 ax-mp I=BaseJ
13 12 2 eqtr3i BaseJ=×0
14 10 13 eleqtrri 10BaseJ
15 oveq1 i=10iJx=10Jx
16 15 eqeq1d i=10iJx=x10Jx=x
17 16 ovanraleqv i=10xBaseJiJx=xxJi=xxBaseJ10Jx=xxJ10=x
18 id 10BaseJ10BaseJ
19 12 eleq2i xIxBaseJ
20 1 2 3 pzriprnglem6 xI10Jx=xxJ10=x
21 19 20 sylbir xBaseJ10Jx=xxJ10=x
22 21 a1i 10BaseJxBaseJ10Jx=xxJ10=x
23 22 ralrimiv 10BaseJxBaseJ10Jx=xxJ10=x
24 17 18 23 rspcedvdw 10BaseJiBaseJxBaseJiJx=xxJi=x
25 14 24 ax-mp iBaseJxBaseJiJx=xxJi=x
26 eqid BaseJ=BaseJ
27 eqid J=J
28 26 27 isringrng JRingJRngiBaseJxBaseJiJx=xxJi=x
29 6 25 28 mpbir2an JRing