Step |
Hyp |
Ref |
Expression |
1 |
|
pzriprng.r |
|- R = ( ZZring Xs. ZZring ) |
2 |
|
pzriprng.i |
|- I = ( ZZ X. { 0 } ) |
3 |
|
pzriprng.j |
|- J = ( R |`s I ) |
4 |
1 2
|
pzriprnglem5 |
|- I e. ( SubRng ` R ) |
5 |
3
|
subrngrng |
|- ( I e. ( SubRng ` R ) -> J e. Rng ) |
6 |
4 5
|
ax-mp |
|- J e. Rng |
7 |
|
1z |
|- 1 e. ZZ |
8 |
|
c0ex |
|- 0 e. _V |
9 |
8
|
snid |
|- 0 e. { 0 } |
10 |
7 9
|
opelxpii |
|- <. 1 , 0 >. e. ( ZZ X. { 0 } ) |
11 |
3
|
subrngbas |
|- ( I e. ( SubRng ` R ) -> I = ( Base ` J ) ) |
12 |
4 11
|
ax-mp |
|- I = ( Base ` J ) |
13 |
12 2
|
eqtr3i |
|- ( Base ` J ) = ( ZZ X. { 0 } ) |
14 |
10 13
|
eleqtrri |
|- <. 1 , 0 >. e. ( Base ` J ) |
15 |
|
oveq1 |
|- ( i = <. 1 , 0 >. -> ( i ( .r ` J ) x ) = ( <. 1 , 0 >. ( .r ` J ) x ) ) |
16 |
15
|
eqeq1d |
|- ( i = <. 1 , 0 >. -> ( ( i ( .r ` J ) x ) = x <-> ( <. 1 , 0 >. ( .r ` J ) x ) = x ) ) |
17 |
16
|
ovanraleqv |
|- ( i = <. 1 , 0 >. -> ( A. x e. ( Base ` J ) ( ( i ( .r ` J ) x ) = x /\ ( x ( .r ` J ) i ) = x ) <-> A. x e. ( Base ` J ) ( ( <. 1 , 0 >. ( .r ` J ) x ) = x /\ ( x ( .r ` J ) <. 1 , 0 >. ) = x ) ) ) |
18 |
|
id |
|- ( <. 1 , 0 >. e. ( Base ` J ) -> <. 1 , 0 >. e. ( Base ` J ) ) |
19 |
12
|
eleq2i |
|- ( x e. I <-> x e. ( Base ` J ) ) |
20 |
1 2 3
|
pzriprnglem6 |
|- ( x e. I -> ( ( <. 1 , 0 >. ( .r ` J ) x ) = x /\ ( x ( .r ` J ) <. 1 , 0 >. ) = x ) ) |
21 |
19 20
|
sylbir |
|- ( x e. ( Base ` J ) -> ( ( <. 1 , 0 >. ( .r ` J ) x ) = x /\ ( x ( .r ` J ) <. 1 , 0 >. ) = x ) ) |
22 |
21
|
a1i |
|- ( <. 1 , 0 >. e. ( Base ` J ) -> ( x e. ( Base ` J ) -> ( ( <. 1 , 0 >. ( .r ` J ) x ) = x /\ ( x ( .r ` J ) <. 1 , 0 >. ) = x ) ) ) |
23 |
22
|
ralrimiv |
|- ( <. 1 , 0 >. e. ( Base ` J ) -> A. x e. ( Base ` J ) ( ( <. 1 , 0 >. ( .r ` J ) x ) = x /\ ( x ( .r ` J ) <. 1 , 0 >. ) = x ) ) |
24 |
17 18 23
|
rspcedvdw |
|- ( <. 1 , 0 >. e. ( Base ` J ) -> E. i e. ( Base ` J ) A. x e. ( Base ` J ) ( ( i ( .r ` J ) x ) = x /\ ( x ( .r ` J ) i ) = x ) ) |
25 |
14 24
|
ax-mp |
|- E. i e. ( Base ` J ) A. x e. ( Base ` J ) ( ( i ( .r ` J ) x ) = x /\ ( x ( .r ` J ) i ) = x ) |
26 |
|
eqid |
|- ( Base ` J ) = ( Base ` J ) |
27 |
|
eqid |
|- ( .r ` J ) = ( .r ` J ) |
28 |
26 27
|
isringrng |
|- ( J e. Ring <-> ( J e. Rng /\ E. i e. ( Base ` J ) A. x e. ( Base ` J ) ( ( i ( .r ` J ) x ) = x /\ ( x ( .r ` J ) i ) = x ) ) ) |
29 |
6 25 28
|
mpbir2an |
|- J e. Ring |