Step |
Hyp |
Ref |
Expression |
1 |
|
pzriprng.r |
⊢ 𝑅 = ( ℤring ×s ℤring ) |
2 |
|
pzriprng.i |
⊢ 𝐼 = ( ℤ × { 0 } ) |
3 |
|
pzriprng.j |
⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) |
4 |
1 2
|
pzriprnglem5 |
⊢ 𝐼 ∈ ( SubRng ‘ 𝑅 ) |
5 |
3
|
subrngrng |
⊢ ( 𝐼 ∈ ( SubRng ‘ 𝑅 ) → 𝐽 ∈ Rng ) |
6 |
4 5
|
ax-mp |
⊢ 𝐽 ∈ Rng |
7 |
|
1z |
⊢ 1 ∈ ℤ |
8 |
|
c0ex |
⊢ 0 ∈ V |
9 |
8
|
snid |
⊢ 0 ∈ { 0 } |
10 |
7 9
|
opelxpii |
⊢ 〈 1 , 0 〉 ∈ ( ℤ × { 0 } ) |
11 |
3
|
subrngbas |
⊢ ( 𝐼 ∈ ( SubRng ‘ 𝑅 ) → 𝐼 = ( Base ‘ 𝐽 ) ) |
12 |
4 11
|
ax-mp |
⊢ 𝐼 = ( Base ‘ 𝐽 ) |
13 |
12 2
|
eqtr3i |
⊢ ( Base ‘ 𝐽 ) = ( ℤ × { 0 } ) |
14 |
10 13
|
eleqtrri |
⊢ 〈 1 , 0 〉 ∈ ( Base ‘ 𝐽 ) |
15 |
|
oveq1 |
⊢ ( 𝑖 = 〈 1 , 0 〉 → ( 𝑖 ( .r ‘ 𝐽 ) 𝑥 ) = ( 〈 1 , 0 〉 ( .r ‘ 𝐽 ) 𝑥 ) ) |
16 |
15
|
eqeq1d |
⊢ ( 𝑖 = 〈 1 , 0 〉 → ( ( 𝑖 ( .r ‘ 𝐽 ) 𝑥 ) = 𝑥 ↔ ( 〈 1 , 0 〉 ( .r ‘ 𝐽 ) 𝑥 ) = 𝑥 ) ) |
17 |
16
|
ovanraleqv |
⊢ ( 𝑖 = 〈 1 , 0 〉 → ( ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ( ( 𝑖 ( .r ‘ 𝐽 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝐽 ) 𝑖 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ( ( 〈 1 , 0 〉 ( .r ‘ 𝐽 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝐽 ) 〈 1 , 0 〉 ) = 𝑥 ) ) ) |
18 |
|
id |
⊢ ( 〈 1 , 0 〉 ∈ ( Base ‘ 𝐽 ) → 〈 1 , 0 〉 ∈ ( Base ‘ 𝐽 ) ) |
19 |
12
|
eleq2i |
⊢ ( 𝑥 ∈ 𝐼 ↔ 𝑥 ∈ ( Base ‘ 𝐽 ) ) |
20 |
1 2 3
|
pzriprnglem6 |
⊢ ( 𝑥 ∈ 𝐼 → ( ( 〈 1 , 0 〉 ( .r ‘ 𝐽 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝐽 ) 〈 1 , 0 〉 ) = 𝑥 ) ) |
21 |
19 20
|
sylbir |
⊢ ( 𝑥 ∈ ( Base ‘ 𝐽 ) → ( ( 〈 1 , 0 〉 ( .r ‘ 𝐽 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝐽 ) 〈 1 , 0 〉 ) = 𝑥 ) ) |
22 |
21
|
a1i |
⊢ ( 〈 1 , 0 〉 ∈ ( Base ‘ 𝐽 ) → ( 𝑥 ∈ ( Base ‘ 𝐽 ) → ( ( 〈 1 , 0 〉 ( .r ‘ 𝐽 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝐽 ) 〈 1 , 0 〉 ) = 𝑥 ) ) ) |
23 |
22
|
ralrimiv |
⊢ ( 〈 1 , 0 〉 ∈ ( Base ‘ 𝐽 ) → ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ( ( 〈 1 , 0 〉 ( .r ‘ 𝐽 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝐽 ) 〈 1 , 0 〉 ) = 𝑥 ) ) |
24 |
17 18 23
|
rspcedvdw |
⊢ ( 〈 1 , 0 〉 ∈ ( Base ‘ 𝐽 ) → ∃ 𝑖 ∈ ( Base ‘ 𝐽 ) ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ( ( 𝑖 ( .r ‘ 𝐽 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝐽 ) 𝑖 ) = 𝑥 ) ) |
25 |
14 24
|
ax-mp |
⊢ ∃ 𝑖 ∈ ( Base ‘ 𝐽 ) ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ( ( 𝑖 ( .r ‘ 𝐽 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝐽 ) 𝑖 ) = 𝑥 ) |
26 |
|
eqid |
⊢ ( Base ‘ 𝐽 ) = ( Base ‘ 𝐽 ) |
27 |
|
eqid |
⊢ ( .r ‘ 𝐽 ) = ( .r ‘ 𝐽 ) |
28 |
26 27
|
isringrng |
⊢ ( 𝐽 ∈ Ring ↔ ( 𝐽 ∈ Rng ∧ ∃ 𝑖 ∈ ( Base ‘ 𝐽 ) ∀ 𝑥 ∈ ( Base ‘ 𝐽 ) ( ( 𝑖 ( .r ‘ 𝐽 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝐽 ) 𝑖 ) = 𝑥 ) ) ) |
29 |
6 25 28
|
mpbir2an |
⊢ 𝐽 ∈ Ring |