Step |
Hyp |
Ref |
Expression |
1 |
|
pzriprng.r |
⊢ 𝑅 = ( ℤring ×s ℤring ) |
2 |
|
pzriprng.i |
⊢ 𝐼 = ( ℤ × { 0 } ) |
3 |
1 2
|
pzriprnglem4 |
⊢ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) |
4 |
1 2
|
pzriprnglem3 |
⊢ ( 𝑥 ∈ 𝐼 ↔ ∃ 𝑎 ∈ ℤ 𝑥 = 〈 𝑎 , 0 〉 ) |
5 |
1 2
|
pzriprnglem3 |
⊢ ( 𝑦 ∈ 𝐼 ↔ ∃ 𝑏 ∈ ℤ 𝑦 = 〈 𝑏 , 0 〉 ) |
6 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
7 |
|
zringring |
⊢ ℤring ∈ Ring |
8 |
7
|
a1i |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ℤring ∈ Ring ) |
9 |
|
simpl |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → 𝑎 ∈ ℤ ) |
10 |
|
0zd |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → 0 ∈ ℤ ) |
11 |
|
simpr |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → 𝑏 ∈ ℤ ) |
12 |
|
zringmulr |
⊢ · = ( .r ‘ ℤring ) |
13 |
12
|
eqcomi |
⊢ ( .r ‘ ℤring ) = · |
14 |
13
|
oveqi |
⊢ ( 𝑎 ( .r ‘ ℤring ) 𝑏 ) = ( 𝑎 · 𝑏 ) |
15 |
|
zmulcl |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 𝑎 · 𝑏 ) ∈ ℤ ) |
16 |
14 15
|
eqeltrid |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 𝑎 ( .r ‘ ℤring ) 𝑏 ) ∈ ℤ ) |
17 |
13
|
oveqi |
⊢ ( 0 ( .r ‘ ℤring ) 0 ) = ( 0 · 0 ) |
18 |
|
0cn |
⊢ 0 ∈ ℂ |
19 |
18
|
mul02i |
⊢ ( 0 · 0 ) = 0 |
20 |
17 19
|
eqtri |
⊢ ( 0 ( .r ‘ ℤring ) 0 ) = 0 |
21 |
|
0z |
⊢ 0 ∈ ℤ |
22 |
20 21
|
eqeltri |
⊢ ( 0 ( .r ‘ ℤring ) 0 ) ∈ ℤ |
23 |
22
|
a1i |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 0 ( .r ‘ ℤring ) 0 ) ∈ ℤ ) |
24 |
|
eqid |
⊢ ( .r ‘ ℤring ) = ( .r ‘ ℤring ) |
25 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
26 |
1 6 6 8 8 9 10 11 10 16 23 24 24 25
|
xpsmul |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 〈 𝑎 , 0 〉 ( .r ‘ 𝑅 ) 〈 𝑏 , 0 〉 ) = 〈 ( 𝑎 ( .r ‘ ℤring ) 𝑏 ) , ( 0 ( .r ‘ ℤring ) 0 ) 〉 ) |
27 |
|
c0ex |
⊢ 0 ∈ V |
28 |
27
|
snid |
⊢ 0 ∈ { 0 } |
29 |
28
|
a1i |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → 0 ∈ { 0 } ) |
30 |
20 29
|
eqeltrid |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 0 ( .r ‘ ℤring ) 0 ) ∈ { 0 } ) |
31 |
16 30
|
opelxpd |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → 〈 ( 𝑎 ( .r ‘ ℤring ) 𝑏 ) , ( 0 ( .r ‘ ℤring ) 0 ) 〉 ∈ ( ℤ × { 0 } ) ) |
32 |
26 31
|
eqeltrd |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 〈 𝑎 , 0 〉 ( .r ‘ 𝑅 ) 〈 𝑏 , 0 〉 ) ∈ ( ℤ × { 0 } ) ) |
33 |
32
|
adantr |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑦 = 〈 𝑏 , 0 〉 ∧ 𝑥 = 〈 𝑎 , 0 〉 ) ) → ( 〈 𝑎 , 0 〉 ( .r ‘ 𝑅 ) 〈 𝑏 , 0 〉 ) ∈ ( ℤ × { 0 } ) ) |
34 |
|
oveq12 |
⊢ ( ( 𝑥 = 〈 𝑎 , 0 〉 ∧ 𝑦 = 〈 𝑏 , 0 〉 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 〈 𝑎 , 0 〉 ( .r ‘ 𝑅 ) 〈 𝑏 , 0 〉 ) ) |
35 |
34
|
ancoms |
⊢ ( ( 𝑦 = 〈 𝑏 , 0 〉 ∧ 𝑥 = 〈 𝑎 , 0 〉 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 〈 𝑎 , 0 〉 ( .r ‘ 𝑅 ) 〈 𝑏 , 0 〉 ) ) |
36 |
35
|
adantl |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑦 = 〈 𝑏 , 0 〉 ∧ 𝑥 = 〈 𝑎 , 0 〉 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 〈 𝑎 , 0 〉 ( .r ‘ 𝑅 ) 〈 𝑏 , 0 〉 ) ) |
37 |
2
|
a1i |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑦 = 〈 𝑏 , 0 〉 ∧ 𝑥 = 〈 𝑎 , 0 〉 ) ) → 𝐼 = ( ℤ × { 0 } ) ) |
38 |
33 36 37
|
3eltr4d |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑦 = 〈 𝑏 , 0 〉 ∧ 𝑥 = 〈 𝑎 , 0 〉 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) |
39 |
38
|
exp32 |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 𝑦 = 〈 𝑏 , 0 〉 → ( 𝑥 = 〈 𝑎 , 0 〉 → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) ) ) |
40 |
39
|
rexlimdva |
⊢ ( 𝑎 ∈ ℤ → ( ∃ 𝑏 ∈ ℤ 𝑦 = 〈 𝑏 , 0 〉 → ( 𝑥 = 〈 𝑎 , 0 〉 → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) ) ) |
41 |
40
|
com23 |
⊢ ( 𝑎 ∈ ℤ → ( 𝑥 = 〈 𝑎 , 0 〉 → ( ∃ 𝑏 ∈ ℤ 𝑦 = 〈 𝑏 , 0 〉 → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) ) ) |
42 |
41
|
rexlimiv |
⊢ ( ∃ 𝑎 ∈ ℤ 𝑥 = 〈 𝑎 , 0 〉 → ( ∃ 𝑏 ∈ ℤ 𝑦 = 〈 𝑏 , 0 〉 → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) ) |
43 |
42
|
imp |
⊢ ( ( ∃ 𝑎 ∈ ℤ 𝑥 = 〈 𝑎 , 0 〉 ∧ ∃ 𝑏 ∈ ℤ 𝑦 = 〈 𝑏 , 0 〉 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) |
44 |
4 5 43
|
syl2anb |
⊢ ( ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) |
45 |
44
|
rgen2 |
⊢ ∀ 𝑥 ∈ 𝐼 ∀ 𝑦 ∈ 𝐼 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 |
46 |
1
|
pzriprnglem1 |
⊢ 𝑅 ∈ Rng |
47 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
48 |
47 25
|
issubrng2 |
⊢ ( 𝑅 ∈ Rng → ( 𝐼 ∈ ( SubRng ‘ 𝑅 ) ↔ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐼 ∀ 𝑦 ∈ 𝐼 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) ) ) |
49 |
46 48
|
ax-mp |
⊢ ( 𝐼 ∈ ( SubRng ‘ 𝑅 ) ↔ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐼 ∀ 𝑦 ∈ 𝐼 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) ) |
50 |
3 45 49
|
mpbir2an |
⊢ 𝐼 ∈ ( SubRng ‘ 𝑅 ) |