Metamath Proof Explorer


Theorem pzriprnglem5

Description: Lemma 5 for pzriprng : I is a subring of the non-unital ring R . (Contributed by AV, 18-Mar-2025)

Ref Expression
Hypotheses pzriprng.r 𝑅 = ( ℤring ×sring )
pzriprng.i 𝐼 = ( ℤ × { 0 } )
Assertion pzriprnglem5 𝐼 ∈ ( SubRng ‘ 𝑅 )

Proof

Step Hyp Ref Expression
1 pzriprng.r 𝑅 = ( ℤring ×sring )
2 pzriprng.i 𝐼 = ( ℤ × { 0 } )
3 1 2 pzriprnglem4 𝐼 ∈ ( SubGrp ‘ 𝑅 )
4 1 2 pzriprnglem3 ( 𝑥𝐼 ↔ ∃ 𝑎 ∈ ℤ 𝑥 = ⟨ 𝑎 , 0 ⟩ )
5 1 2 pzriprnglem3 ( 𝑦𝐼 ↔ ∃ 𝑏 ∈ ℤ 𝑦 = ⟨ 𝑏 , 0 ⟩ )
6 zringbas ℤ = ( Base ‘ ℤring )
7 zringring ring ∈ Ring
8 7 a1i ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ℤring ∈ Ring )
9 simpl ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → 𝑎 ∈ ℤ )
10 0zd ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → 0 ∈ ℤ )
11 simpr ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → 𝑏 ∈ ℤ )
12 zringmulr · = ( .r ‘ ℤring )
13 12 eqcomi ( .r ‘ ℤring ) = ·
14 13 oveqi ( 𝑎 ( .r ‘ ℤring ) 𝑏 ) = ( 𝑎 · 𝑏 )
15 zmulcl ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 𝑎 · 𝑏 ) ∈ ℤ )
16 14 15 eqeltrid ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 𝑎 ( .r ‘ ℤring ) 𝑏 ) ∈ ℤ )
17 13 oveqi ( 0 ( .r ‘ ℤring ) 0 ) = ( 0 · 0 )
18 0cn 0 ∈ ℂ
19 18 mul02i ( 0 · 0 ) = 0
20 17 19 eqtri ( 0 ( .r ‘ ℤring ) 0 ) = 0
21 0z 0 ∈ ℤ
22 20 21 eqeltri ( 0 ( .r ‘ ℤring ) 0 ) ∈ ℤ
23 22 a1i ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 0 ( .r ‘ ℤring ) 0 ) ∈ ℤ )
24 eqid ( .r ‘ ℤring ) = ( .r ‘ ℤring )
25 eqid ( .r𝑅 ) = ( .r𝑅 )
26 1 6 6 8 8 9 10 11 10 16 23 24 24 25 xpsmul ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( ⟨ 𝑎 , 0 ⟩ ( .r𝑅 ) ⟨ 𝑏 , 0 ⟩ ) = ⟨ ( 𝑎 ( .r ‘ ℤring ) 𝑏 ) , ( 0 ( .r ‘ ℤring ) 0 ) ⟩ )
27 c0ex 0 ∈ V
28 27 snid 0 ∈ { 0 }
29 28 a1i ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → 0 ∈ { 0 } )
30 20 29 eqeltrid ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 0 ( .r ‘ ℤring ) 0 ) ∈ { 0 } )
31 16 30 opelxpd ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ⟨ ( 𝑎 ( .r ‘ ℤring ) 𝑏 ) , ( 0 ( .r ‘ ℤring ) 0 ) ⟩ ∈ ( ℤ × { 0 } ) )
32 26 31 eqeltrd ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( ⟨ 𝑎 , 0 ⟩ ( .r𝑅 ) ⟨ 𝑏 , 0 ⟩ ) ∈ ( ℤ × { 0 } ) )
33 32 adantr ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑦 = ⟨ 𝑏 , 0 ⟩ ∧ 𝑥 = ⟨ 𝑎 , 0 ⟩ ) ) → ( ⟨ 𝑎 , 0 ⟩ ( .r𝑅 ) ⟨ 𝑏 , 0 ⟩ ) ∈ ( ℤ × { 0 } ) )
34 oveq12 ( ( 𝑥 = ⟨ 𝑎 , 0 ⟩ ∧ 𝑦 = ⟨ 𝑏 , 0 ⟩ ) → ( 𝑥 ( .r𝑅 ) 𝑦 ) = ( ⟨ 𝑎 , 0 ⟩ ( .r𝑅 ) ⟨ 𝑏 , 0 ⟩ ) )
35 34 ancoms ( ( 𝑦 = ⟨ 𝑏 , 0 ⟩ ∧ 𝑥 = ⟨ 𝑎 , 0 ⟩ ) → ( 𝑥 ( .r𝑅 ) 𝑦 ) = ( ⟨ 𝑎 , 0 ⟩ ( .r𝑅 ) ⟨ 𝑏 , 0 ⟩ ) )
36 35 adantl ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑦 = ⟨ 𝑏 , 0 ⟩ ∧ 𝑥 = ⟨ 𝑎 , 0 ⟩ ) ) → ( 𝑥 ( .r𝑅 ) 𝑦 ) = ( ⟨ 𝑎 , 0 ⟩ ( .r𝑅 ) ⟨ 𝑏 , 0 ⟩ ) )
37 2 a1i ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑦 = ⟨ 𝑏 , 0 ⟩ ∧ 𝑥 = ⟨ 𝑎 , 0 ⟩ ) ) → 𝐼 = ( ℤ × { 0 } ) )
38 33 36 37 3eltr4d ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑦 = ⟨ 𝑏 , 0 ⟩ ∧ 𝑥 = ⟨ 𝑎 , 0 ⟩ ) ) → ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ 𝐼 )
39 38 exp32 ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 𝑦 = ⟨ 𝑏 , 0 ⟩ → ( 𝑥 = ⟨ 𝑎 , 0 ⟩ → ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ 𝐼 ) ) )
40 39 rexlimdva ( 𝑎 ∈ ℤ → ( ∃ 𝑏 ∈ ℤ 𝑦 = ⟨ 𝑏 , 0 ⟩ → ( 𝑥 = ⟨ 𝑎 , 0 ⟩ → ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ 𝐼 ) ) )
41 40 com23 ( 𝑎 ∈ ℤ → ( 𝑥 = ⟨ 𝑎 , 0 ⟩ → ( ∃ 𝑏 ∈ ℤ 𝑦 = ⟨ 𝑏 , 0 ⟩ → ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ 𝐼 ) ) )
42 41 rexlimiv ( ∃ 𝑎 ∈ ℤ 𝑥 = ⟨ 𝑎 , 0 ⟩ → ( ∃ 𝑏 ∈ ℤ 𝑦 = ⟨ 𝑏 , 0 ⟩ → ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ 𝐼 ) )
43 42 imp ( ( ∃ 𝑎 ∈ ℤ 𝑥 = ⟨ 𝑎 , 0 ⟩ ∧ ∃ 𝑏 ∈ ℤ 𝑦 = ⟨ 𝑏 , 0 ⟩ ) → ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ 𝐼 )
44 4 5 43 syl2anb ( ( 𝑥𝐼𝑦𝐼 ) → ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ 𝐼 )
45 44 rgen2 𝑥𝐼𝑦𝐼 ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ 𝐼
46 1 pzriprnglem1 𝑅 ∈ Rng
47 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
48 47 25 issubrng2 ( 𝑅 ∈ Rng → ( 𝐼 ∈ ( SubRng ‘ 𝑅 ) ↔ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥𝐼𝑦𝐼 ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ 𝐼 ) ) )
49 46 48 ax-mp ( 𝐼 ∈ ( SubRng ‘ 𝑅 ) ↔ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥𝐼𝑦𝐼 ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ 𝐼 ) )
50 3 45 49 mpbir2an 𝐼 ∈ ( SubRng ‘ 𝑅 )