Metamath Proof Explorer


Theorem pzriprnglem3

Description: Lemma 3 for pzriprng : An element of I is an ordered pair. (Contributed by AV, 18-Mar-2025)

Ref Expression
Hypotheses pzriprng.r 𝑅 = ( ℤring ×sring )
pzriprng.i 𝐼 = ( ℤ × { 0 } )
Assertion pzriprnglem3 ( 𝑋𝐼 ↔ ∃ 𝑥 ∈ ℤ 𝑋 = ⟨ 𝑥 , 0 ⟩ )

Proof

Step Hyp Ref Expression
1 pzriprng.r 𝑅 = ( ℤring ×sring )
2 pzriprng.i 𝐼 = ( ℤ × { 0 } )
3 2 eleq2i ( 𝑋𝐼𝑋 ∈ ( ℤ × { 0 } ) )
4 elxp2 ( 𝑋 ∈ ( ℤ × { 0 } ) ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ { 0 } 𝑋 = ⟨ 𝑥 , 𝑦 ⟩ )
5 0z 0 ∈ ℤ
6 opeq2 ( 𝑦 = 0 → ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑥 , 0 ⟩ )
7 6 eqeq2d ( 𝑦 = 0 → ( 𝑋 = ⟨ 𝑥 , 𝑦 ⟩ ↔ 𝑋 = ⟨ 𝑥 , 0 ⟩ ) )
8 7 rexsng ( 0 ∈ ℤ → ( ∃ 𝑦 ∈ { 0 } 𝑋 = ⟨ 𝑥 , 𝑦 ⟩ ↔ 𝑋 = ⟨ 𝑥 , 0 ⟩ ) )
9 5 8 ax-mp ( ∃ 𝑦 ∈ { 0 } 𝑋 = ⟨ 𝑥 , 𝑦 ⟩ ↔ 𝑋 = ⟨ 𝑥 , 0 ⟩ )
10 9 rexbii ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ { 0 } 𝑋 = ⟨ 𝑥 , 𝑦 ⟩ ↔ ∃ 𝑥 ∈ ℤ 𝑋 = ⟨ 𝑥 , 0 ⟩ )
11 3 4 10 3bitri ( 𝑋𝐼 ↔ ∃ 𝑥 ∈ ℤ 𝑋 = ⟨ 𝑥 , 0 ⟩ )